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Abstract. We use Galois cohomology to study the p-rank of the class group

of Q(N1/p), where N ≡ 1 mod p is prime. We prove a partial converse to a
theorem of Calegari–Emerton, and provide a new explanation of the known

counterexamples to the full converse of their result. In the case p = 5, we

prove a complete characterization of the 5-rank of the class group of Q(N1/5)

in terms of whether or not
∏(N−1)/2

k=1 kk and
√
5−1
2

are 5th powers mod N .
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1. Introduction

Let N and p ≥ 3 be prime numbers with p|(N − 1). Fix an algebraic closure
Q of Q and a choice of N1/p ∈ Q, and let K denote the field Q(N1/p). The goal
of this article is to study the class group ClK of K, and in particular its p-rank
rK = dimFp(ClK ⊗ Fp). We access rK by class field theory, as rK is equal to
the maximal r such that K admits an unramified-everywhere (Z/pZ)r-extension.
By genus theory, rK ≥ 1, since the degree-p subfield of K(ζN )/K is unramified
everywhere; this is a corollary of Lemma 2.2.4. Our starting point is the following
theorem of Calegari–Emerton.

Theorem (Calegari–Emerton, Theorem 1.3, (ii) of [2]). Suppose that p ≥ 5, and

let C =
∏(N−1)/2
k=1 kk. If C is a pth power in F×N , then rK ≥ 2.

This theorem is proven using deformation theory of Galois representations. Pre-
vious work of Merel [7] showed that whether or not the number C is a pth power
determines whether the Zp-rank of a certain Hecke algebra is at least 2. Calegari–
Emerton identify this Hecke algebra with a deformation space of Galois repre-
sentations, and construct an unramified Fp-extension of K in the case that the
deformation space has Zp-rank at least 2. More recently, this theorem was given
another proof by Wake–Wang-Erickson (see Proposition 11.1.1 of [12], restated in
this article as Proposition 4.0.1) using cup products in Galois cohomology.

Calegari–Emerton also raise the question of whether or not the converse to this
theorem holds. Numerical computations suggested that it was true when p = 5,
but not in general. Indeed, Lecouturier noticed in [6] that the converse fails in the
case p = 7, N = 337.

1.1. Results. For odd i satisfying 1 ≤ i ≤ p− 4, let

Mi =

N−1∏
k=1

k−1∏
a=1

ka
i

,

as first defined by Lecouturier in [6], and let rQ(ζp) be the p-rank of ClQ(ζp). Let
χ be the mod-p cyclotomic character and say that (p,−i) is a regular pair if the
χ−i-eigenspace of ClQ(ζp) is trivial.

Lecouturier proves that

rK ≤ rQ(ζp) + p− 2− µ,
where µ is the number of odd i such that 1 ≤ i ≤ p − 4, (p,−i) is a regular pair,
and Mi is not a pth power in F×N .

Using a new method, we improve the previous bound on rK :

Theorem 1.1.1.
rK ≤ rQ(ζp) + p− 2− 2µ.

This follows from the stronger inequality of Theorem 1.2.1 combined with The-
orems 1.2.2 and 1.2.3. An immediate corollary of Theorem 1.1.1 in the case of
regular p is the following partial converse to the theorem of Calegari–Emerton:
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Theorem 1.1.2. Suppose that p is regular, and that rK ≥ 2. Then at least one of
the Mi is a pth power in F×N .

Proof. If rK ≥ 2, then the inequality of Theorem 1.1.1 shows that 2 ≤ p− 2− 2µ.
As there are p−3

2 many Mi, it must be the case that µ < p−3
2 , i.e. at least one of

the Mi is a pth power in F×N . �

The quantity M1 is a pth power in F×N if and only if C =
∏(N−1)/2
k=1 kk is (see

Section 5.2 for this comparison).
When p = 5, Theorem 1.1.2 is the full converse to the theorem of Calegari–

Emerton, as the only Mi is M1. Furthermore, we give in Section 6.2 an effective
method for completely determining rK in this case:

Theorem 1.1.3. Let p = 5. Then, 1 ≤ rK ≤ 3 according to the following condi-
tions:

(1) rK ≥ 2 if and only if M1 is a 5th power in F×N .

(2) rK = 3 if and only if both M1 and
√

5−1
2 are 5th powers in F×N .

The converse to Theorem 1.1.2 is not true in general: in the case p = 11, N = 353
one has that both rK = 1 and M3 is an 11th power in F×353. However, the converse
to Theorem 1.1.2 is true in the case p = 7, which we prove in Section 6.3:

Theorem 1.1.4. Let p = 7. Then rK ≥ 2 if and only if one of M1 or M3 is a 7th
power in F×N .

This also explains the counterexample p = 7, N = 337 to the naive converse of
the theorem of Calegari–Emerton: in that case, rK = 2 and M1 is not a 7th power
in F×337, but M3 is.

1.2. Strategy. Put S = {p,N,∞} and let GQ,S be the Galois group over Q of the
maximal extension of Q unramified outside of S.

The methods used in this article are inspired by the strategy that Wake–Wang-
Erickson use to prove the theorem of Calegari–Emerton. They show that M1 being
a pth power in F×N is equivalent to the vanishing of a certain cup product in Galois
cohomology. The vanishing of this cup product implies the existence of a reducible
representation GQ,S → GL3(Fp), from which an unramified Fp-extension of K is
constructed.

Let Fp(i) denote the module Fp on which GQ,S acts by χi. Choose an iso-
morphism µp → Fp(1) and let b : GQ,S → Fp(1) be the cocycle defined by

b(σ) = σ(N1/p)/N1/p. Let V ∼= F2
p be the vector space on which GQ,S acts by

the representation

GQ,S → GL2(Fp)

σ 7→
(
χ(σ) b(σ)

0 1

)
.

In an abuse of notation, we will also use b to refer to the class of this cocycle in
H1(GQ,S ,Fp(1)), which is just the Kummer class of N . Starting with an unramified
Fp-extension of K, we use the classification of indecomposable Fp-representations
of Gal(K(ζp)/Q) ∼= Z/pZ o (Z/pZ)× to show the existence of an upper-triangular
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Galois representation GQ,S → GLm+2(Fp) of the form

 SymmV ⊗ Fp(−m) ∗

1

 =



1 χ−1b χ−2 b2

2 · · · χ−m bm

m! ∗
χ−1 χ−2b · · · χ−m bm−1

(m−1)! ∗

χ−2
...

...
. . . χ−mb ∗

χ−m ∗
1


.

Note that this symmetric power is written using a slightly non-standard basis,
see Remark 3.1.8 for an explanation as to why we use this basis.

The representations arising in this fashion give rise to classes in the GQ,S-

cohomology of the high-dimensional Galois representations SymjV ⊗ Fp(i). We
study the local properties of these cohomology classes and show that they satisfy a
Selmer condition Σ, first considered by Wake–Wang-Erickson for the Galois module
Fp(−1) (see Section 2.2 for the definition of Σ in general). This Selmer condition Σ
is chosen to detect exactly those classes whose cup product with b is equal to 0. This
leads to the following bound on rK in terms of the dimensions of the cohomology
groups:

Theorem 1.2.1. Let h1
Σ(Fp(−i)) denote the Fp-dimension of H1

Σ(Fp(−i)). We
have

1 + h1
Σ(Fp(−1)) ≤ rK ≤ 1 +

p−3∑
i=1

h1
Σ(Fp(−i)).

Section 3 is dedicated to the proof of this theorem. Note that this theorem has
as a corollary the statement that if rK ≥ 2, then at least one of the H1

Σ(Fp(−i)) is
nonzero. By a computation using Gauss sums, we relate the dimensions h1

Σ(Fp(−i))
to the quantities Mi introduced earlier.

Theorem 1.2.2. Assume that i is odd and (p,−i) is a regular pair. Then we have
h1

Σ(Fp(−i)) = 1 if and only if Mi is a pth power in F×N , and h1
Σ(Fp(−i)) = 0

otherwise.

The proof of this theorem can be found in Sections 5.1 and 5.2.
While not needed to establish Theorem 1.1.1, in order to prove Theorem 1.1.3

we need to find a computable criterion for determining when h1
Σ(Fp(−i)) = 1 for

even i. This is done for (p, 1 + i) a regular pair in Section 5.3.
Finally, to establish Theorem 1.1.1, we need the following theorem, which comes

from duality theorems in Galois cohomology.

Theorem 1.2.3. For any 1 ≤ i ≤ p− 3

h1
Σ(Fp(−i)) ≤ 1 + rχ

−i

Q(ζp),

where rχ
−i

Q(ζp) is the p-rank of the χ−i-eigenspace of ClQ(ζp).

Furthermore, if p is odd and h1
Σ(Fp(−i)) = 0, then h1

Σ(Fp(−(p − 2 − i))) =
h1

Σ(Fp(1 + i)) = 0 as well.

This theorem is a combination of Theorem 2.3.4 and Corollary 2.3.7.
The outline of this article is as follows. In Section 2, we recall some facts about

Selmer groups, define the Selmer condition Σ, and prove several lemmas about the
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relationship between the condition Σ and the vanishing of cup products. In Section
3, we relate the p-part of ClK to Selmer groups of higher-dimensional representa-
tions of GQ,S and prove Theorem 1.2.1. In Section 4, we prove results about when
classes in H1

Σ(Fp(−i)) can be lifted to classes in the Σ-Selmer group of the higher-
dimensional representations arising in Section 3. In Section 5, we demonstrate
relationships between Selmer groups of characters and the quantities Mi for odd
i. For even i, the Selmer group is shown to be related to both M1−i and another
quantity arising from the units of the cyclotomic field Q(ζp). Finally, in Section 6,
we analyze the cases p = 5 and p = 7 in more detail. Appendix A contains com-
puter calculations of rK and the dimensions h1

Σ(Fp(−i)) for p = 5, N ≤ 20,000,000
and p = 7, N ≤ 100,000,000.

One might ask if the techniques of this article can be applied to composite N .
The authors are currently considering this generalization.

1.3. Acknowledgements. The authors would like to thank Frank Calegari and
Matthew Emerton for many helpful discussions on this topic. We would in par-
ticular like to thank Frank Calegari for drawing our attention to this problem and
for suggesting the techniques that led to the theorems in Section 3.1. The authors
would also like to thank Emmanuel Lecouturier, Romyar Sharifi, Preston Wake,
and Carl Wang-Erickson for their encouragement and interest in our results, and
for feedback on an early draft of this article. We also thank the anonymous referee
for their suggestions which greatly improved the clarity of the paper.

2. Cohomology Computations

Throughout this article we will work with Selmer groups in the cohomology of
various mod-p representations of GQ = Gal(Q/Q). In fact all representations we
consider will be unramified outside of S = {p,N,∞}, so will be representations of
GQ,S , the Galois group over Q of the maximal extension of Q unramified outside
of S.

2.1. Notation. We first establish some notation and conventions used throughout
the article as well as recall some facts about group cohomology. Let A be an
Fp-vector space with an action of GQ via ρ : GQ → GLn(Fp).

• Let Fp and Fp(1) be the 1-dimensional Fp-vector spaces on which GQ

acts trivially and by the mod-p cyclotomic character χ, respectively. Let
A(i) = A ⊗Fp Fp(1)⊗i. Throughout, fix a primitive pth root of unity ζp,
which determines an isomorphism µp ∼= Fp(1).

• Let b : GQ,S → Fp(1) be the cocycle defined by σ 7→ σ(N1/p)/N1/p. By
Kummer Theory,

H1(GQ,S ,Fp(1)) =
Z[1/pN ]×

Z[1/pN ]×p
.

The class of b in H1(GQ,S ,Fp(1)), which we also denote by b, is the class
of N under this isomorphism.
• We denote by A∨ and A∗ the GQ-modules

A∨ = Hom(A,Fp) and A∗ = A∨(1) = Hom(A,Fp(1)).
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• Given a class a ∈ H1(GQ, A) represented by a cocyle a : GQ → A ∼= Fnp ,
we can write

a(σ) =

 a0(σ)
...

an−1(σ)


for σ ∈ GQ. This defines a new (n + 1)-dimensional GQ-representation
which is an extension of Fp by A via the map

σ 7→


a0(σ)

ρ(σ)
...

an−1(σ)
0 1

 ∈ GLn+1(Fp)

whose kernel cuts out a Galois extension of Q. Conversely, given a GQ-
representation which is an extension of Fp by A of the above form, we get
a cohomology class which we denote by

a =

 a0

...
an−1

 ∈ H1(GQ, A).

• Given any characters χ, χ′ : GQ → F×p , let Fp(χ) and Fp(χ
′) be the lines

on which GQ acts by χ and χ′, respectively. Classes a ∈ H1(GQ,Fp(χ))
and a′ ∈ H1(GQ,Fp(χ

′)) correspond to 2-dimensional GQ-representations
of the forms (

χ a
0 1

)
and

(
χ′ a′

0 1

)
,

respectively. These patch together to form a 3-dimensional representationχχ′ χ′a c
0 χ′ a′

0 0 1


if and only if a∪a′ = 0 as cohomology classes, in which case the coboundary
of −c is the cochain a ∪ a′.

For a GQ-module A, recall that a Selmer condition is a collection L = {Lv} of
subspaces Lv ⊆ H1(GQv

, A) where v runs over all places of Q, such that Lv is the
unramified subspace

H1
ur(GQv

, A) := H1(GFv , A
Iv )

for almost all places v, where Iv ⊆ GQv
= Gal(Qv/Qv) is the inertia subgroup and

GFv = GQv
/Iv is the absolute Galois group of the residue field at v. The Selmer

group associated to a set of conditions L is then

H1
L(GQ, A) = ker

(
H1(GQ, A)→

∏
v

H1(GQv
, A)

Lv

)
.

We will use the following conventions in describing Selmer groups.

• To simplify notation, we will denote a Selmer group H1
L(GQ, A) by H1

L(A).
• As every module A we will consider will be an Fp-vector space, we will use

the following notation for dimensions:

h1
L(A) = dimFp(H1

L(A)).
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• All Selmer conditions we use have the unramified condition at places outside
of S. In particular, since p is assumed to be odd, we will always have
H1(GR, A) = 0, removing the need to specify a local condition at the
infinite place.
• Given a subset T ⊂ S = {p,N,∞}, we will use the notation H1

T (A) to
denote the Selmer group with the unramified condition at all places outside
of T , and any behavior allowed at the places of T .

Remark 2.1.1. If A is a module for GQ,S then the Selmer group H1
S(A) is equal to

the GQ,S-cohomology H1(GQ,S , A). Every GQ-module we consider will in fact be
a GQ,S-module.

Given a Selmer condition L = {Lv} for A, L∗ := {L⊥v } is a Selmer condition for
A∗, where the orthogonal complements are taken with respect to the Tate pairing
on local cohomology groups. Note that when v does not divide #A and the action of
GQv

on A is unramified, we have that H1
ur(GQv

, A)⊥ = H1
ur(GQv

, A∗) (see Theorem
2.6 of [8]). A main tool that we will use is the following formula for sizes of Selmer
groups, due to Greenberg and Wiles.

Theorem 2.1.2. Let A be a finite GQ-module, and let L = {Lv} be a Selmer
condition for A. Then H1

L(A) and H1
L∗(A

∗) are finite and

#H1
L(A)

#H1
L∗(A

∗)
=

#H0(GQ, A)

#H0(GQ, A∗)

∏
v

#Lv
#H0(GQv

, A)

where the product is over all places v of Q.

See [13] for a proof of this theorem. For all v that don’t divide #A and for
which Lv is the subgroup of unramified classes, one has #Lv = #H0(GQv

, A).
Since every Selmer condition that we will use will have the unramified condition
at places outside S and since all of our modules will be Fp-vector spaces, the only
terms of the above product which will ever contribute in our applications are the
H0 term and the local terms at N , p, and ∞.

We will often want to compare sizes of Selmer groups when we change the Selmer
conditions. The following lemma gives a way to do such a comparison.

Lemma 2.1.3. Suppose that L = {Lv} and L′ = {L′v} are two Selmer conditions
for A where L ⊂ L′ in the sense that Lv ⊆ L′v for all v. Then we have

#H1
L′(A) ≤ #H1

L(A)
∏
v

#L′v
#Lv

where the product is over all places v of Q.

Proof. By the definitions of the Selmer groups in question there is an exact sequence

0→ H1
L(A)→ H1

L′(A)→
⊕
v

L′v
Lv
.

The lemma follows by considering the sizes of the terms in this sequence. �

2.2. The Selmer Condition Σ. We define here the Selmer condition Σ = {Lv}.
The local conditions of Σ are defined by

• Lp = 0.



8 KARL SCHAEFER AND ERIC STUBLEY

• LN = ker
(
res : H1(GQN

, A)→ H1(GKN , A)
)

where KN = QN (N1/p) is
the completion of the field K at the unique prime above N .
• Lv is the unramified condition at places outside S.

As usual, we define the dual Selmer condition Σ∗ = {L⊥v }, where L⊥v is the annihi-
lator of Lv under the local cup product pairing. Applied to a GQ,S-module A, it is
clear that L⊥p = H1(GQp

, A), and L⊥v = H1
ur(GQp

, A) for places v outside S. See

Proposition 2.2.3 for the determination of the condition L⊥N .
We will only consider these Selmer conditions Σ and Σ∗ for modules which

are isomorphic as GQN
-modules to Symn(V ) for some n ≥ 0, where V is the 2-

dimensional Fp-vector space on which GQ,S acts in some basis by(
χ b
0 1

)
.

Note that when viewed as a GQN
-module the cyclotomic character χ is trivial, as

µp ⊂ Q×N .
We establish in the following lemma and propositions the statements about

SymnV and its cohomology as a GQN
-module which will be relevant for apply-

ing Theorem 2.1.2.

Lemma 2.2.1. For n ≤ p− 1, (SymnV )∨ ∼= SymnV ⊗ Fp(−n).

Proof. Note that the action of GQ on SymnV factors through G = Gal(K(ζp)/Q).
The range of n considered are in fact those symmetric powers of V which are
indecomposable as Fp-representations of G (see Theorem 3.1.6). The only inde-
composable representation of G of dimension n are the twists by χ of SymnV ; since
the dual of an indecomposable representation will certainly also be indecomposable
and of the same dimension, we must have that (SymnV )∨ ∼= SymnV ⊗ Fp(m) for
some m. We consider the evaluation pairing

SymnV ⊗ (SymnV )∨ → Fp

restricted to the 1-dimensional subrepresentation Fp(n) of SymnV . Since the above
pairing is a perfect GQ-module pairing, the annihilator of Fp(n) must be an n-
dimensional subrepresentation of (SymnV )∨. Since (SymnV )∨ ∼= SymnV ⊗ Fp(m)
has a unique n-dimensional subrepresentation, this means that the pairing descends
to a perfect pairing between Fp(n) and the (unique) 1-dimensional quotient of
(SymnV )∨. As this 1-dimensional quotient is Fp(m), we conclude that m = −n, as
a perfect GQ-module pairing

Fp(n)⊗ Fp(m)→ Fp

exists if and only if m = −n. �

Proposition 2.2.2. For all n in the range 0 ≤ n ≤ p − 2, H1(GQN
,SymnV ) is

2-dimensional, being spanned by

a =


a
0
...
0

 and b =


bn+1

(n+1)!
bn

n!
...
b

 ,
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where a is a class spanning the 1-dimensional unramified subspace of H1(GQN
,Fp),

and b is the class corresponding to Symn+1V , which is an extension of Fp by
SymnV as GQN

-modules.
Further, the subgroup LN ⊂ H1(GQN

,SymnV ) is 1-dimensional and spanned by
b.

Proof. It follows from the Local Euler Characteristic Formula (Theorem 2.8 of [8])
that H1(GQN

,SymnV ) is 2-dimensional. Consider the short exact sequence

0→ Fp → SymnV → Symn−1V → 0

of GQN
-modules. The first terms of the associated long exact sequence in GQN

-
cohomology give us

0→ Fp → Fp → Fp
b∪−−→ H1(GQN

,Fp)→ H1(GQN
,SymnV ).

Since a and b form a basis for H1(GQN
,Fp), and the image of Fp

b∪−−→ H1(GQN
,Fp)

is the span of b, we conclude that the image of

H1(GQN
,Fp)→ H1(GQN

,SymnV )

is spanned by the image of a; this is the class a defined above. To see that the class
b is nonzero, consider the map

H1(GQN
,SymnV )→ H1(GQN

,Fp)

coming from the long exact sequence in GQN
-cohomology associated to the short

exact sequence
0→ Symn−1V → SymnV → Fp → 0.

The image of b under this map is the class b ∈ H1(GQN
,Fp), which is nonzero,

hence we conclude that b itself is nonzero.
Finally we see that a and b are linearly independent in H1(GQN

,SymnV ) (and
therefore constitute a basis), as b is trivial when restricted to GKN (even as a
cocycle) and a is not. This also establishes that

LN = ker(H1(GQN
,SymnV )→ H1(GKN ,SymnV ))

is 1-dimensional and is spanned by b. �

Proposition 2.2.3. Suppose that A ∼= SymnV as a GQN
-representation for some

n ≤ p− 2. Under the local Tate pairing

H1(GQN
, A)⊗H1(GQN

, A∗)→ H2(GQN
,Fp(1))

the annihilator of LN ⊆ H1(GQN
, A) is

L⊥N = ker
(
res : H1(GQN

, A∗)→ H1(GKN , A
∗)
)
.

That is, the dual condition L⊥N is again the condition LN (applied to the module
A∗).

Proof. We first note that if suffices to prove this proposition only for SymnV , as
if f : SymnV → A is an isomorphism of GQN

-modules, we have that f induces an
isomorphism between first cohomology groups which restricts to an isomorphism
between the LN subgroup on each side. The same also holds for the LN subgroups
in the first cohomology of (SymnV )∗ and A∗.

Choose an isomorphism of GQN
-modules φ : SymnV → (SymnV )∗ (this is possi-

ble as globally SymnV is self-dual up to a twist by some power of χ by Lemma 2.2.1,
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and χ is trivial as a character of GQN
). We have as before that the isomorphism

on first cohomology induced by φ restricts to an isomorphism of LN subgroups;
we write henceforth φ(LN ) for the LN condition subgroup of H1(GQN

, (SymnV )∗).
We know that the local Tate pairing in question is a perfect pairing, hence the
annihilator L⊥N of LN must also be 1-dimensional. Therefore it suffices to prove
that φ(LN ) is contained in L⊥N , i.e. LN ∪ φ(LN ) = 0.

The cup product map

H1(GQN
,SymnV )⊗H1(GQN

,SymnV )→ H2(GQN
, (SymnV )⊗2)

is alternating, as it is in an odd degree of cohomology. In particular under this cup
product map LN ∪ LN = 0. Applying the isomorphism φ to the second coordinate
gives that under the cup product

H1(GQN
,SymnV )⊗H1(GQN

, (SymnV )∗)→ H2(GQN
,SymnV ⊗ (SymnV )∗)

we have that LN ∪ φ(LN ) = 0. The local Tate pairing is the composition of the
above cup product map with the map

H2(GQN
,SymnV ⊗ (SymnV )∗)→ H2(GQN

,Fp(1))

induced by the evaluation pairing SymnV ⊗ (SymnV )∗ → Fp(1), so we conclude
that φ(LN ) = L⊥N . �

We finish this section with a lemma regarding the Selmer group H1
Σ∗(Fp).

Lemma 2.2.4. The completion of Q(ζ
(p)
N ) at the prime above N is KN . That is,

the class c ∈ H1
S(Fp) which represents Q(ζ

(p)
N ) lies in the Selmer subgroup H1

Σ∗(Fp).

Proof. The two extensions of QN in question are QN (ζ
(p)
N ) and QN (N1/p), both of

which are totally ramified Fp-extensions of QN .
We can see their equality by computing the norm subgroup in Q×N of both

extensions and showing they are equal. We know that the norm subgroups will
contain (Q×N )p as an index p subgroup; since this is index p2 in Q×N , it suffices to
show that our two norm groups both contain the element N . One one hand we
have that

NormKN
QN

(N1/p) =

p−1∏
i=0

ζipN
1/p

= N

but we also have

Norm
QN (ζ

(p)
N )

QN
(Norm

QN (ζN )

QN (ζ
(p)
N )

(1− ζN )) = Norm
QN (ζN )
QN

(1− ζN )

=

N−1∏
j=1

(1− ζjN )

= N.

Therefore we conclude that QN (ζ
(p)
N ) = KN . �
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2.3. Selmer Groups in the Cohomology of the Cyclotomic Character.
This section contains a collection of statements about the dimensions of various
Selmer groups in the cohomology of Fp(i).

Definition 2.3.1. Let p be an odd prime and 0 ≤ i ≤ p − 2. Let rχ
i

Q(ζp) denote

the p-rank of the χi-eigenspace of the class group of Q(ζp). We say that (p, i) is a

regular pair if rχ
i

Q(ζp) = 0.

Remark 2.3.2. It is always true that (p, 0) and (p, 1) are regular pairs. If i is odd,
the theorems of Herbrand and Ribet give the following characterization: (p, i) is a
regular pair if and only if the generalized Bernoulli number B1,χ−i (equivalently,
the Bernoulli number Bp−i) is not divisible by p. See Section 6.3 of [14] for a more
detailed discussion of these facts.

Theorem 2.3.3. Let p be an odd prime. The following statements are true.

(1) The group H1
S(Fp) is 2-dimensional, spanned by the classes of the homo-

morphisms defining the degree p subfields Q(ζ
(p)
N ) and Q(ζ

(p)
p2 ) of Q(ζN )

and Q(ζp2), respectively.
(2) The group H1

S(Fp(1)) is 2-dimensional, and spanned by the classes of N
and p under the Kummer isomorphism

H1
S(Fp(1)) =

Z[1/pN ]×

(Z[1/pN ]×)p
.

(3) For any i, we have that

h1
∅(Fp(i)) = rχ

i

Q(ζp).

(4) For any odd i 6≡ 1 mod p− 1 we have that

h1
∅(Fp(1− i)) ≤ h

1
∅(Fp(i)) ≤ 1 + h1

∅(Fp(1− i)).

This is equivalent to Theorem 10.9 of [14].

Proof. Parts 1 and 2 follow from the Kronecker-Weber theorem and Kummer the-
ory, respectively.

For part 3, note that the restriction map

H1(GQ,S ,Fp(i))→ H1(GQ(ζp),S ,Fp(i))
Gal(Q(ζp)/Q)

is an isomorphism by the inflation-restriction sequence. This latter group can be
interpreted as the Fp-extensions of Q(ζp) which are unramified away from S and
whose Galois group is Fp(i) as a Gal(Q(ζp)/Q)-module through the equality

H1(GQ(ζp),S ,Fp(i)) = Hom(GQ(ζp),S ,Fp(i)).

The subgroup H1
∅ (Fp(i)) is those classes which are unramified everywhere. Global

class field theory gives that rχ
i

Q(ζp) is the number of independent Fp-extensions

of Q(ζp) which are unramified everywhere and whose Galois group is Fp(i) as a
Gal(Q(ζp)/Q)-module. Thus we conclude that the dimension h1

∅(Fp(i)) is equal to

rχ
i

Q(ζp), as both count the same set of extensions.
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The inequalities in part 4 both follow from applying Theorem 2.1.2 and estimat-
ing dimensions in a change of Selmer conditions as in Lemma 2.1.3. For instance,
by Theorem 2.1.2 applied to H1

∅ (Fp(i)) we have

#H1
∅ (Fp(i))

#H1
∅∗(Fp(1− i))

=
#H0(Fp(i))

#H0(Fp(1− i))
∏
v

#Lv
#H0(GQv ,Fp(i))

=
#H0(Fp(i))

#H0(Fp(1− i))
· #H1

ur(GQN
,Fp(i))

#H0(GQN
,Fp(i))

·
#H1

ur(GQp ,Fp(i))

#H0(GQp
,Fp(i))

· #H1(GR,Fp(i))

#H0(GR,Fp(i))

=
1

1
· p
p
· 1

1
· 1

1

= 1

where we know all of the local terms using the Local Euler Characteristic Formula
and the parity of i. Stated in terms of dimensions, this relation is

h1
∅(Fp(i)) = h1

∅∗(Fp(1− i)).

Since we have that the Selmer condition ∅∗ contains the Selmer condition ∅, we
may apply Lemma 2.1.3 to get

#H1
∅∗(Fp(1− i)) ≤ #H1

∅ (Fp(1− i))
#H1(GQp

,Fp(1− i))
#H1

ur(GQp
,Fp(1− i))

= #H1
∅ (Fp(1− i)) · p

where we have again used the Local Euler Characteristic Formula to determine the
local terms. Stated in terms of dimensions, this relation is

h1
∅∗(Fp(1− i)) ≤ h

1
∅(Fp(1− i)) + 1.

Thus we conclude that

h1
∅(Fp(i)) ≤ h

1
∅(Fp(1− i)) + 1.

The other inequality of part 4 follows from a similar argument, starting with
H1
∅ (Fp(1− i)). �

Corollary 2.3.4. For any i, h1
Σ(Fp(i)) ≤ 1 + rχ

i

Q(ζp).

Proof. This follows from the fact that H1
Σ(Fp(i)) ⊆ H1

N (Fp(i)) and Lemma 2.1.3
applied to the Selmer conditions ∅ and N along with part 3 of the previous Theorem.

�

Theorem 2.3.5. Let p be an odd prime, let i 6≡ 1 mod p− 1 be odd, and assume
that (p, i) is a regular pair. Then we have the following

(1) h1
∅(Fp(i)) = h1

∅(Fp(1− i)) = 0.

(2) h1
S(Fp(i)) = 2, h1

p(Fp(i)) = 1, and h1
N (Fp(i)) = 1.

(3) h1
S(Fp(1− i)) = 1.

(4) h1
Σ(Fp(i)) and h1

Σ(Fp(1− i)) are both at most 1.
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Proof. The first statement follows from parts 3 and 4 of Theorem 2.3.3 under the
assumption that (p, i) is a regular pair.

Parts 2 and 3 each follow from applying Theorem 2.1.2 and then estimating
changes in Selmer conditions. For instance, Theorem 2.1.2 for H1

N (Fp(i)) yields

h1
N (Fp(i)) = 1 + h1

N∗(Fp(1− i)).

We have that the Selmer condition N∗ means classes which are split at N and have
any behavior at p, hence H1

N∗(Fp(1− i)) ⊆ H1
p (Fp(1− i)). Applying Theorem 2.1.2

to H1
p (Fp(1− i)) yields

h1
p(Fp(1− i)) = h1

p∗(Fp(i)).

Since the Selmer condition p∗ is “unramified at N and split at p”, we have

H1
p∗(Fp(i)) ⊆ H1

∅ (Fp(i)).

The statement h1
N (Fp(i)) = 1 thus follows from the chain of inequalities

h1
N (Fp(i)) = 1 + h1

N∗(Fp(1− i))
≤ 1 + h1

p(Fp(1− i))
= 1 + h1

p∗(Fp(i))

≤ 1 + h1
∅(Fp(i))

= 1 + 0.

Part 4 of the theorem now follows from the inclusions H1
Σ(Fp(i)) ⊆ H1

N (Fp(i))
and H1

Σ(Fp(1− i)) ⊆ H1
S(Fp(1− i)); in both cases we know that the dimension of

the larger group is 1. �

Theorem 2.3.6. Let p be an odd prime. Then for odd 3 ≤ i ≤ p− 2 we have

h1
Σ(Fp(i)) = h1

Σ∗(Fp(1− i))
h1

Σ∗(Fp(i)) = h1
Σ(Fp(1− i)) + 1

h1
Σ∗(Fp(i)) ≤ 1 + h1

Σ(Fp(i)).

Proof. The first two statements are proved by applying Theorem 2.1.2 to H1
Σ(Fp(i))

and H1
Σ∗(Fp(i)). The final statement follows from Lemma 2.1.3 applied to Σ and

Σ∗. �

Corollary 2.3.7. Let p be an odd prime. Then for even i 6≡ 0 mod p− 1,

h1
Σ(Fp(i)) 6= 0 =⇒ h1

Σ(Fp(1− i)) 6= 0.

Proof. If h1
Σ(Fp(i)) ≥ 1, then by Theorem 2.3.6 we have h1

Σ∗(Fp(1 − i)) ≥ 2.
Comparing via

h1
Σ∗(Fp(1− i)) ≤ 1 + h1

Σ(Fp(1− i))
gives that h1

Σ(Fp(1− i)) ≥ 1. �

Remark 2.3.8. Under the assumption that (p, i) is a regular pair, we know that
any nonzero class in H1

Σ(Fp(i)) (for i 6= 0, 1) will be a nonzero multiple of b when
restricted to GQN

: being in the span of b is the local condition at N for these
modules, and since this class is split at p and unramified everywhere else, the
regularity assumption on p forces this class to be nonzero locally at N .
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2.4. Cup Products and Σ. The purpose of the Selmer condition Σ∗ is to detect
those classes whose cup product with b is equal to 0, according to the following
propositions.

Proposition 2.4.1. Let p be an odd prime and 0 ≤ i ≤ p − 2. Assume either
i = 0 or 1, that (p, i) is a regular pair if i is odd, or that (p, 1 − i) is a regular
pair if i is even. Let A and A′ be GQ,S-modules with a pairing A ⊗ A′ → Fp(i)
for some i. Given classes a ∈ H1

S(A) and a′ ∈ H1
S(A′), the global cup product

a ∪ a′ ∈ H2
S(GQ,Fp(i)) induced by this pairing vanishes if and only if the local cup

product resN (a) ∪ resN (a′) ∈ H2(GQN
,Fp(i)) does.

Proof. We first claim that the restriction map H2
S(Fp(i)) → H2(GQN

,Fp(i)) is
injective. Under the regularity assumption on (p, i), the Global Euler Characteristic
Formula (Theorem 5.1 of [8]) combined with Theorems 2.3.3 and 2.3.5 gives us that
H2
S(Fp(i)) is 1-dimensional. Similarly, H2(GQN

,Fp(i)) is 1-dimensional by Local
Tate Duality (Corollary 2.3 of [8]). Thus, to prove injectivity it suffices to prove
surjectivity.

The end of the Poitou-Tate exact sequence (Theorem 4.10 of [8]) for Fp(i) is

H2
S(Fp(i))→ H2(GQp ,Fp(i))⊕H2(GQN

,Fp(i))→ H0(GQ,S ,Fp(1− i))∨ → 0.

If i 6= 1 the surjectivity is immediate, as the final term in this sequence is 0. If
i = 1, the definitions of the maps involved show that the image of H2

S(Fp(i)) lands
in H2(GQN

,Fp(i)).
Thus, the commutativity of the diagram

H1
S(A)⊗H1

S(A′) H2
S(GQ,Fp(i))

H1(GQN
, A)⊗H1(GQN

, A′) H2(GQN
,Fp(i))

∪

∪

shows that the non-vanishing of a ∪ a′ can be detected locally, as desired. �

Remark 2.4.2. In the notation of the previous proposition, when (p, i) is not a
regular pair it is still (clearly) true that a∪a′ = 0 implies that resN (a)∪resN (a′) = 0.
However, the converse need not hold in this setting as h2

S(Fp(i)) need not be equal
to 1, and thus the map H2

S(Fp(i))→ H2(GQN
,Fp(i)) need not be injective.

Proposition 2.4.3. Let p be any odd prime and 0 ≤ i ≤ p−2. Let A,A′ be as in the
previous proposition, but assume now that A,A′ ∼= SymnV as GQN

-representations.
If a ∈ H1

Σ∗(A) and resN (a) 6= 0, and if a′ ∈ H1
S(A′), then resN (a) ∪ resN (a′) = 0 if

and only if a′ ∈ H1
Σ∗(A

′). In particular, if a ∪ a′ = 0 then a′ ∈ H1
Σ∗(A

′).
Furthermore, if either i = 0 or 1, or if (p, i) is a regular pair and i is odd, or if

(p, 1− i) is a regular pair and i is even, then a∪a′ = 0 if and only if a′ ∈ H1
Σ∗(A

′).

Proof. Since resN (a) is nonzero, Proposition 2.2.2 gives that resN (a) = ub for
some nonzero u ∈ Fp. Furthermore, Proposition 2.2.3 shows that the statement
ub ∪ resN (a′) = 0 implies that resN (a′) is also multiple of b (possibly 0), which
is the condition for a′ to be an element of the Selmer group H1

Σ∗(A
′). The final

statement of the proposition then follows from Proposition 2.4.1. �
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3. Selmer groups and ClK

The goal of this section is to relate the p-rank rK of the class group of K to the
rank of a certain Selmer subgroup of the Galois cohomology of a cyclotomic twist
of Symp−4V , which in turn is bounded by dimensions of Selmer subgroups in the
Galois cohomology of characters.

The main theorem of this section is:

Theorem 3.0.1. Let p be odd. Then

rK = 1 + h1
Σ(Symp−4V ⊗ Fp(2)).

Additionally, there is a filtration of Symp−4V ⊗ Fp(2) that induces the following
lower and upper bounds on rK :

1 + h1
Σ(Fp(−1)) ≤ rK ≤ 1 +

p−3∑
i=1

h1
Σ(Fp(−i)).

This is essentially Theorem 1.2.1. The lower bound in this theorem was first es-
tablished by Wake–Wang-Erickson; we recover this as Proposition 4.0.1. Through-
out this section, E will be an unramified Fp-extension of K and M will be its Galois
closure over Q. The proof begins in Section 3.1 with some preliminary lemmas on
the structure of Gal(M/K(ζp)) as a Gal(K(ζp)/Q)-representation.

In Section 3.2, we introduce an auxiliary Selmer condition Λ, which will encode
the local conditions that cut out those Galois cohomology classes corresponding to
unramified Fp-extensions of K. We will also define a filtration on the Fp-vector

space H1
Λ(Symp−3V ⊗ Fp(2)) related to the filtration defined by Iimura in [4] on

ClK(ζp); see Remark 3.2.4. This filtration of Iimura is also used by Lecouturier in
[6].

The next step in the proof of Theorem 3.0.1 is to relate the Selmer condition
Λ to the Selmer condition Σ defined in Section 2.2. This is done in Section 3.3,
which also contains some general lemmas that realize Σ∗ as the “correct” Selmer
condition for discussing the lifting of representations to higher dimensions.

Finally, we descend the filtration on H1
Λ(Symp−3V ⊗ Fp(2)) to a filtration on

H1
Σ(Symp−4V ⊗ Fp(2)). In Section 3.4, we use this filtration to bound the rank

h1
Σ(Symp−4V ⊗Fp(2)) in terms of the ranks h1

Σ(Fp(−i)) of the Σ-Selmer groups of
characters. This will complete the proof of Theorem 3.0.1.

3.1. Indecomposability of some Gal(K(ζp)/Q)-modules arising from ClK .
Let E/K be unramified and Galois of degree p and let M be the Galois closure of
E over Q, as in the diagram (∗) below.
M is the compositum of the G := Gal(K(ζp)/Q)-translates of E(ζp)/K(ζp),

which implies that M is an unramified elementary abelian p-extension of K(ζp).
Thus A := Gal(M/K(ζp)) ∼= (Z/pZ)m for some m ≥ 1. This prompts the following
definition.

Definition 3.1.1. In the above notation, we say that the unramified Fp-extension
E/K is type m where m = dimFp(Gal(M/K(ζp))).

Our goal in this subsection is to prove the following theorem.

Theorem 3.1.2. A = Gal(M/K(ζp)) is an Fp-vector space, and is isomorphic to

Symm−1V ⊗Fp(1−m) as a G = Gal(K(ζp)/Q)-representation where m is the type
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(∗)

M

E(ζp)

E K(ζp)

K Q(ζp)

Q

A

G

of E/K. Furthermore, we have 1 ≤ m ≤ p− 2. In particular, A is indecomposable
as a representation of G.

Note that our fixed primitive pth root of unity ζp gives us a canonical generator

of Gal(K(ζp)/Q(ζp)), namely the particular σ with σ(N1/p) = ζpN
1/p. We use this

to fix an isomorphism G ∼= Z/pZ o (Z/pZ)×.

Lemma 3.1.3. The following short exact sequence splits.

1→ A→ Gal(M/Q)→ G→ 1

Proof. We argue by means of group cohomology; consider the Hochschild-Serre
spectral sequence. Since Hj(Z/pZ, A) is an Fp-vector space, its order is coprime
to the order of (Z/pZ)× and thus

Hi((Z/pZ)×, Hj(Z/pZ, A)) = 0

for all i > 0. Hence the only nonzero column on the E2 page is the 0th one, which
implies that the restriction map

H2(G,A)→ H2(Z/pZ, A)(Z/pZ)×

is an isomorphism.
We wish to show that the class [Gal(M/Q)] ∈ H2(G,A) is 0. Its image in

H2(Z/pZ, A) under the restriction map is the class of [Gal(M/Q(ζp))] coming from

1→ A→ Gal(M/Q(ζp))→ Gal(K(ζp)/Q(ζp))→ 1.

We can explicitly construct a splitting of this sequence. Let N be a prime of
M lying above N . The total ramification degree of N in M/Q(ζp) is p, since
N is totally ramified in K(ζp)/Q(ζp) and unramified in M/K(ζp), so the inertia
group at N is a copy of Z/pZ in Gal(M/Q(ζp)) that maps isomorphically onto
Gal(K(ζp)/Q(ζp)). This inertia group is the image our desired splitting. �

Before continuing, we record the following general fact that we make use of
throughout the section.

Lemma 3.1.4. Suppose that F and F ′ are extensions of Qp(ζp), each of degree
dividing p and Galois over Qp, and that Gal(F/Qp(ζp)) and Gal(F ′/Qp(ζp)) are
not isomorphic as representations of Gal(Qp(ζp)/Qp) = (Z/pZ)×, or that both
extensions are trivial. If FF ′/F is unramified, then F ′/Qp(ζp) is also unramified.
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This follows from the fact that any unramified extension of Qp(ζp) must be cyclic
and Galois over Qp, and that Fp(i) ⊕ Fp(j) has exactly two (Z/pZ)×-fixed lines
when i 6= j.

Our next goal is to show that 1 ≤ m ≤ p − 2 where m, as above, is the type of
E/K. The lower inequality is immediate. However, we can say slightly more about
this edge case.

Proposition 3.1.5. E/K is of type 1 (i.e. m = 1) if and only if E = K(ζ
(p)
N ) is the

genus field of K, where ζ
(p)
N is any generator of the degree-p subfield of Q(ζN )/Q.

Proof. The backward direction is trivial: It is clearly unramified away from N ,

Lemma 2.2.4 shows that K(ζ
(p)
N )/K is unramified at N as well, and the Galois

closure of K(ζ
(p)
N )/Q is K(ζp, ζ

(p)
N ).

If m = 1 then E(ζp) = M is Galois over Q and A = Z/pZ. Consider the action
of G on A by conjugation and recall that G = Z/pZ oχ (Z/pZ)×. The order-p
subgroup of G acts trivially on A as there are no non-trivial 1-dimensional Fp-
representations of Z/pZ. Referencing (∗), we see that (Z/pZ)× ⊆ G is the image
of Gal(E(ζp)/E) ⊆ Gal(E(ζp)/Q) which acts trivially on A = Gal(E(ζp)/K(ζp)),
as E(ζp) is the compositum of the Galois extensions E/K and K(ζp)/K.

Thus we conclude that G acts trivially on A and hence that

Gal(E(ζp)/Q) = Z/pZ×G

by Lemma 3.1.3. Consider L = E(ζp)
G, which is Z/pZ extension of Q. As

Gal(E(ζp)/E) = (Z/pZ)× ⊆ G we know that L ⊆ E. As L 6= K this tells us
that E = LK.

We claim that L = Q(ζ
(p)
N ). To see this, it suffices to notice that L is unramified

away from N . By choice of E, it is automatically unramified away from p and N .
At p, it suffices to check that L(ζp)/Q(ζp) is unramified, as [L : Q] is coprime to
[Q(ζp) : Q]. We have the following diagram of fields:

E(ζp)

L(ζp) K(ζp)

L Q(ζp)

Q

Consider the corresponding extensions of fields locally at p. Because the groups
Gal(L(ζp)/Q(ζp)) and Gal(K(ζp)/Q(ζp)) are not isomorphic as modules over the
group Gal(Q(ζp)/Q) = Gal(Qp(ζp)/Qp), Lemma 3.1.4 gives us the desired conclu-
sion. �

To prove Theorem 3.1.2, we need to view A as a G-representation coming from
the conjugation action of G on A. Our first goal is to show that A is indecompos-
able as a G-representation. We briefly recall the classification of indecomposable
representations of groups of this kind:

Theorem 3.1.6. Let k ∈ Z/(p − 1)Z and let Γk be the group Z/pZ o (Z/pZ)×,
where u ∈ (Z/pZ)× acts on Z/pZ by multiplication by uk.
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The indecomposable Fp-representations of Γk are exactly

SymjVk ⊗ Fp(i)

for 0 ≤ i ≤ p−2 and 0 ≤ j ≤ p−1, where Fp(i) is the 1-dimensional representation
where u ∈ (Z/pZ)× acts by ui and Vk is the 2-dimensional representation of Γk
over Fp given by the map

Γk → GL2(Fp)

(b, u) 7→
(
uk b
0 1

)
.

Proof. See [1] for a proof. The cyclic case Γ0 is treated in a discussion following
Corollary 7 of Chapter 5, and the general case is treated in discussions following
Lemma 8 of Chapter 5 and Corollary 5 of Chapter 6. The structure of the proof is
as follows:

• The irreducible Fp-representations of Γk are all 1-dimensional, namely they
are the 1-dimensional representations Fp(i) of the quotient (Z/pZ)× of Γk.
• There is a bijection between irreducible Fp-representations of Γk and inde-

composable projective Fp[Γk]-modules, given by associating P/rad(P ) to
each indecomposable projective module P . This is Theorem 3 of Chapter
5 of [1].
• Every Fp[Γk]-module X with X/rad(X) ∼= Fp(i) is a homomorphic image of

the indecomposable projective module associated to Fp(i). This is Lemma
5 of Chapter 5 of [1].
• Each indecomposable projective module has radical length exactly p. In

particular it is p-dimensional as an Fp-vector space, as all quotients in
its radical series are irreducible. This is the discussion after Lemma 8 of
Chapter 5 of [1].

This is enough to show that the unique indecomposable projective mod-
ule associated to Fp(i) is Symp−1Vk ⊗ Fp(i), as it is p-dimensional, inde-
composable, and has Fp(i) as a quotient.
• Any indecomposable Fp-representation of Γk has a unique radical series.

In particular if X is an indecomposable Fp-representation of Γk, X/rad(X)
is irreducible. This is the discussion after Corollary 5 of Chapter 6 of [1].

This allows us to conclude that every such X is surjected to by some
Symp−1Vk ⊗ Fp(i); the quotient modules of Symp−1Vk ⊗ Fp(i) are just

SymjVk ⊗ Fp(i) for 0 ≤ j ≤ p− 1. �

Writing our A as a sum of indecomposable representations of G = Γ1, we know
that the number of indecomposable factors is equal to the dimension of AZ/pZ.
Indeed, each indecomposable factor when considered as a representation of Z/pZ
corresponds to a Jordan block with eigenvalue 1. Thus we’ve reduced the indecom-
posability of A to showing that AZ/pZ is 1-dimensional.

Lemma 3.1.7. AZ/pZ is 1-dimensional. Furthermore, it carries the trivial action
of (Z/pZ)× = Gal(Q(ζp)/Q).

Proof. The first part of the claim follows once we have shown that the subgroup
H = AZ/pZ∩Gal(M/E(ζp)) is trivial, as Gal(M/E(ζp)) is codimension 1 in A. We
will demonstrate this by showing that H is normal in Gal(M/Q). Indeed, as M
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is the Galois closure of E(ζp)/Q, any normal subgroup of Gal(M/Q) contained in
Gal(M/E(ζp)) is necessarily trivial.

Because A is abelian, to show that H is normal in Gal(M/Q) = AoG it suffices
to show that it is fixed by conjugation by G. Again applying the classification of
indecomposable representations of G we see that AZ/pZ is a product of characters
and is thus a G-subrepresentation of A.

Referencing (∗), notice now that the action of (Z/pZ)× = Gal(Q(ζp)/Q) on A
is the same as the action of Gal(E(ζp)/E) on A. But the action of Gal(E(ζp)/E)
on A clearly stabilizes Gal(M/E(ζp)) ⊆ A.

This shows that (Z/pZ)× ⊆ G stabilizes both AZ/pZ and Gal(M/E(ζp)) and thus

it stabilizes their intersection H. As H ⊆ AZ/pZ is also fixed pointwise by Z/pZ,
we conclude that H is fixed by the action of G and is thus normal in Gal(M/Q).

To see the second part of the lemma, we first notice as above that (Z/pZ)× acts
on A as Gal(K(ζp)/K) and thus acts trivially on Gal(E(ζp)/K(ζp)) = Gal(E/K).

The short exact sequence

1→ Gal(M/E(ζp))→ A→ Gal(E(ζp)/K(ζp))→ 1

is Gal(K(ζp)/K)-equivariant. As AZ/pZ has trivial intersection with the above
kernel, it maps isomorphically onto Gal(E(ζp)/K(ζp)), which we just established
carries the trivial (Z/pZ)× action. �

The first part of Lemma 3.1.7 gives A ∼= SymjV ⊗ Fp(i) for some 0 ≤ i ≤ p− 2
and 0 ≤ j ≤ p− 1, and the second part establishes that i = −j. This also implies
that A is a faithful representation of G whenever m ≥ 2, i.e., whenever j ≥ 1.

We now have that A ∼= Symm−1V ⊗ Fp(1 − m) as G-representations, but to
complete the proof of Theorem 3.1.2 it remains to show that m ≤ p − 2. In what
follows, it will be useful to write Gal(M/Q) as an explicit matrix group that we
can view as the image of a representation of GQ,S .

Suppose that A is an Fp-vector space and that G → Aut(A) = GLm(Fp) is
an injective homomorphism. Then A o G is isomorphic to the (m + 1) × (m + 1)
block-matrix group (

G A
0 1

)
where G is identified with its image in GLm(Fp) and elements of A are expressed
as column vectors in the corresponding basis.

Assuming that E is not the genus field of K, A is a faithful G-representation so
the previous paragraph establishes that in a suitable basis of Symm−1V ⊗Fp(1−m)
(see Remark 3.1.8), Gal(M/Q) is isomorphic to the group of matrices

(∗∗)



1 χ−1b χ−2 b2

2 · · · χ−(m−1) bm−1

(m−1)! a0

χ−1 χ−2b · · · χ−(m−1) bm−2

(m−2)! a1

χ−2
...

...
. . . χ−(m−1)b am−2

χ−(m−1) am−1

1
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where the i, j-th entry in the top left block is χ−(j−1) bj−i

(j−i)! . This also defines a

representation
GQ,S → Gal(M/Q)→ GLm+1(Fp)

of dimension m+ 1 that we will consider more carefully in Section 3.2.

Remark 3.1.8. In light of the discussion after Lemma 3.1.7, it will be useful for us
to fix bases of the SymjV ⊗Fp(i) for i, j in the range of Theorem 3.1.6 so that we
can view Gal(M/Q) = AoG as an explicit matrix group. Furthermore, we would

like these bases to be compatible with the quotient maps SymkV → Symk−1V .
For the 2-dimensional representation V we are considering, let {e, f} be the basis

for V as in the discussion at the start of Section 2.2. The usual basis for SymkV
is then {ek, ek−1f, . . . , fk}. In that basis, the i, j-th entry of the top left block is,

ignoring powers of the cyclotomic character,
(
j−1
i−1

)
bj−i.

We can rescale this basis so that the image of the representation SymkV is the
matrix group 

χk χk−1b χk−2 b2

2 · · · bk

k!

χk−1 χk−2b · · · bk−1

(k−1)!

χk−2
...

. . . b
1


.

This map G → GLk+1(Fp) factors through the group Uk+1 of upper-triangular

matrices. Similarly, Symk−1V gives a map G → Uk. There is also a projection
Uk+1 → Uk given by “forget the first row and column”, and the bases above are
chosen so that the triangle

Uk+1

G

Uk

commutes.

If E = Q(N1/p, ζ
(p)
N ) is the genus field, we instead consider the representation

GQ,S → GL2(Fp) of the form (
1 c
0 1

)
where c ∈ Hom(GQ,S ,Fp) = H1

S(Fp) is the class defining the extension Q(ζ
(p)
N )/Q.

Remark 3.1.9. As M/K(ζp) is unramified, we can view its Galois group A as a
quotient of the p-part of the class group ClK(ζp). The results above can then be
viewed through the lens of decomposing this class group into a sum of indecom-
posable Gal(K(ζp)/Q)-representations, similar to classical results on decomposing
the p part of ClQ(ζp) into a sum of Gal(Q(ζp)/Q)-representations. In Section 5 we
will see that the numbers Mi defined in Section 1 play a similar role to that of the
Bernoulli numbers in the structure of ClQ(ζp).

The structure of ClK(ζp) as a Galois module was also studied by Iimura in [4].
The connection between Iimura’s work and our current approach is discussed in
slightly more detail in Remark 3.2.4.
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With the above matrix representation in hand, we can now prove that m ≤ p−2.
Notice that we already have that m ≤ p since all indecomposable representations
of G have dimension no larger than p. We will show directly that m 6= p, p− 1.

Lemma 3.1.10. m 6= p.

Proof. Suppose that m = p. The lower 2× 2 corner of the matrix (∗∗) will thus be(
1 ap−1

0 1

)
which we think of as a quotient of Gal(M/Q) (alternatively, as a new GQ,S-
representation with GM,S in the kernel). This gives us a class ap−1 ∈ H1

S(Fp),
and it cuts out a Z/pZ extension L of Q contained in M and hence unramified
outside of S. We will show that this extension is necessarily unramified at N and
p as well, contradicting its existence. We begin by considering the behavior at p.
Consider the diagram of fields

LK(ζp)

K(ζp) L(ζp)

Q(ζp) L

Q

locally at p. As L ⊆M we know that LK(ζp)/K(ζp) is unramified at p. Applying
Lemma 3.1.4, we conclude that L(ζp)/Q(ζp), and hence L/Q, is also unramified at
p.

Suppose independently that L/Q is (tamely) ramified at N . The inertia group(s)
above N in Gal(M/Q) are cyclic of order p as M/K(ζp) is unramified. If τ is a
generator of the tame inertia group of QN we know by the functoriality of inertia
that b(τ) and ap−1(τ) are both nonzero, as the extensions K(ζp) and L defined by
these classes are ramified at N . Under the quotient map GQ,S → Gal(M/Q) we
have

τ 7→



1 b(τ) b(τ)2

2 · · · b(τ)p−1

(p−1)! a0(τ)

1 b(τ) · · · b(τ)p−2

(p−2)! a1(τ)

1
...

...
. . . b(τ) ap−2(τ)

1 ap−1(τ)
1


.

Raising this to the pth power, we see that the top-right entry of the image of τp

is b(τ)p−1ap−1(τ). But this is nonzero, contradicting the fact that the generator of
the inertia group at N has order p. �

Lemma 3.1.11. m 6= p− 1.

Proof. The lower 2× 2 corner of the matrix (∗∗) will thus be(
χ ap−2

0 1

)
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where ap−2 ∈ H1
S(Fp(1)). As in the previous lemma, we deduce the existence of

an extension L/Q(ζp) contained in M which is Galois over Q, with Galois group
isomorphic to G. The extension L is not equal to K(ζp) however; we have that A
surjects onto Gal(L/Q(ζp)) but not Gal(K(ζp)/Q(ζp)) as A is equal to the kernel
of Gal(M/Q) → Gal(K(ζp)/Q). Thus we must have that ap−2 is not a nonzero
multiple of the class b ∈ H1

S(Fp(1)). However, we know that ap−2∪b = 0 since there
is a 3-dimensional representation of GQ,S coming from the lower 3× 3 quotientχ2 χb ap−3

0 χ ap−2

0 0 1


of the matrix (∗∗), so ap−2 must be a multiple of b by Proposition 2.4.3. This gives
that ap−2 = 0, but then dimFp(A) ≤ p− 2 so E/K is not in fact type p− 1. �

3.2. An Auxiliary Selmer Group. In the previous section, we obtained from an
unramified Fp-extension E/K of type m a representation GQ,S → GLm+1(Fp) of
the form (∗∗). As a representation, it is an extension of the trivial representation
by Symm−1V ⊗ Fp(1 − m) considered as a GQ,S-representation via the quotient
GQ,S → G, so it gives a class

aE =

 a0

...
am−1

 ∈ H1
S(Symm−1V ⊗ Fp(1−m))

as discussed in Section 2.1.
Let Λ be the Selmer condition defined by

• L` = H1
ur(GQ`

, A) for ` 6= N, p
• LN = H1(GQN

, A)
• Lp = res−1(H1

ur(GK(ζp)p , A)) where res is the restriction map

H1(GQp
, A)→ H1(GK(ζp)p , A).

Remark 3.2.1. In the case A = Fp, the containment H1
N (Fp) ⊆ H1

Λ(Fp) is an
equality. This is to say that any Fp-extension L/Q unramified away from S and
unramified at p after base change to K(ζp) was necessarily unramified at p over Q.
This follows from Lemma 3.1.4 as in the end of the proof of Proposition 3.1.5.

Although we don’t need the following fact, it is true that for all of the modules A
listed in Theorem 3.1.2 which can arise as Gal(M/K(ζp)), one hasH1

N (A) = H1
Λ(A);

this follows from Lemma 3.3.5. However, if one wants to use the methods of this
section to study ClK(ζp) or the case of composite N , it is necessary to use modules

A for which H1
N (A) 6= H1

Λ(A).

In this subsection we prove

Theorem 3.2.2. rK = h1
Λ(Symp−3V ⊗ Fp(2)).

The main step in the proof of this theorem is to show that the class aE lies in
the Λ-Selmer subgroup H1

Λ(Symm−1V ⊗ Fp(1−m)) and conversely that any such
Selmer class arises from an unramified Fp-extension E/K. The forward direction is
trivial: the only thing to check is that it satisfies the correct condition at p, which
follows from the fact that M/K(ζp) is unramified above p.
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Note that there is some ambiguity in the choice of aE as any constant multiple
of it defines the same field extension. The proof of Theorem 3.2.2 comes down to
establishing a bijection between the projectivized space PH1

Λ(Symp−3V ⊗ Fp(2))
and the set of unramified Fp-extensions E/K, which can itself be thought of as the
projectivization of the p-part of ClK .

In order to promote aE to a class in H1
Λ(Symp−3V ⊗Fp(2)), consider the natural

filtration on the module Symp−3V ⊗ Fp(2) = Symp−3V ⊗ Fp(3− p) given by

0 ⊆ Fp = Sym0V ⊗ Fp(0)

⊆ Sym1V ⊗ Fp(−1)

⊆ Sym2V ⊗ Fp(−2)

⊆ · · ·
⊆ Symp−3V ⊗ Fp(3− p).

where the kth subspace is the span of the first k basis vectors in the basis used
above in the matrix (∗∗). The successive quotients are

SymkV ⊗ Fp(−k)

Symk−1V ⊗ Fp(1− k)
∼= Fp(−k).

Since these have no GQ,S-fixed points, as 1 ≤ k ≤ p − 3, we get a corresponding
filtration in cohomology

0 ⊆ H1
S(Fp) ⊆ H1

S(Sym1V ⊗ Fp(−1))

⊆ H1
S(Sym2V ⊗ Fp(−2))

⊆ · · ·
⊆ H1

S(Symp−3V ⊗ Fp(3− p))
where each inclusion can be realized concretely via a0

...
ak−1

 7→

a0

...
ak−1

0

 .
This filtration restricts to a filtration on the Selmer subgroups H1

Λ(−). Thus,

given our E/K of type m, we get an element in H1
Λ(Symp−3V ⊗Fp(2)), defined up

to a scalar, as desired.
Conversely, given a nonzero class a ∈ H1

Λ(Symp−3V ⊗ Fp(2)), we can restrict it
to a class in GK,S-cohomology to get a representation of GK,S of the form

1 0 0 · · · 0 a0

χ−1 0 · · · 0 a1

χ−2
...

...
. . . 0 ap−4

χ2 ap−3

1


.

From this we see that a0|GK,S is a homomorphism GK,S → Fp. Note that some of
the ai might be 0 if a comes from some smaller piece of the filtration above, but
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a0|GK,S 6= 0 by the following lemma. Thus, the fixed field of ker(a0|GK,S ), denoted
Ea, is an Fp-extension of K.

Lemma 3.2.3. If a ∈ H1
Λ(Symp−3V ⊗Fp(2)) is nonzero then a0|GK,S : GK,S → Fp

is nonzero as well.

Proof. We will show the equivalent statement that a0|GK(ζp),S
is nonzero. Let A be

Symp−3V ⊗ Fp(2) and consider the inflation-restriction sequence

0→ H1(G,A)→ H1(GQ,S , A)→ H1(GK(ζp),S , A)G.

We claim that H1(G,A) = 0. Using inflation-restriction again, we get that

H1(G,A) ∼= H1(Z/pZ, A)(Z/pZ)× .

It can be explicitly seen that H1(Z/pZ, A) = Fp(2) as a (Z/pZ)×-module, implying
that

H1(Z/pZ, A)(Z/pZ)× = 0.

Therefore, a nonzero a ∈ H1(GQ,S , A) restricts to a nonzero homomorphism
GK(ζp),S → A = Fp−2

p that is invariant under G. In particular, its image is fixed
by the action of G on A so its image is a nonzero G-subrepresentation. However,
the only nontrivial G-subrepresentations of A are the spans of the first k ≥ 1 basis
vectors, all of which contain some element whose first coordinate is nonzero. �

The Selmer condition Λ guarantees that this extension Ea/K is unramified ev-
erywhere. This is obvious for all ` 6= N, p.

At N , Proposition 2.2.2 shows that H1(GQN
,SymkV ⊗Fp(−k)) is 2-dimensional,

spanned by an unramified class and the class corresponding to KN , so the image
of any class here in H1(GKN ,SymkV ⊗ Fp(−k)) is unramified. At p, it suffices to
remark that [Ea : K] is prime to [K(ζp) : K], and thus Ea/K is unramified exactly
when Ea(ζp)/K(ζp) is.

Finally, to finish the proof of Theorem 3.2.2, we remark that the assignments
E 7→ aE and a 7→ Ea are mutually inverse. Indeed, given an unramified E/K,
Theorem 3.1.2 along with the above discussion implies that EaE is the unique
Fp-subextension of M/K such that Gal(K(ζp)/K) = (Z/pZ)× acts trivially on
Gal(EaE (ζp)/K(ζp)). But E satisfies this last property as well, and thus E = EaE .

Conversely, take any two cohomology classes a, a′ ∈ H1
Λ(Symp−3V ⊗Fp(2)) and

assume Ea = Ea′ , which implies that a0|GK,S is a constant multiple of a′0|GK,S .
Scaling a′ so that these are equal and applying Lemma 3.2.3 to a− a′, we conclude
that a− a′ = 0 and hence a = a′.

Remark 3.2.4. We can now think of the filtration on H1
Λ(Symp−3V ⊗ Fp(2)) from

the perspective of the types m of the extensions E/K. Under the correspondence

used to prove Theorem 3.2.2, the subspace H1
Λ(SymkV ⊗ Fp(−k)) contains the E

of type m ≤ k + 1, and the quotient

H1
Λ(SymkV ⊗ Fp(−k))

H1
Λ(Symk−1V ⊗ Fp(1− k))

is nonzero exactly when there is an E/K of type k + 1.
In [4], Iimura defines a descending filtration on the p-part of A = ClK(ζp) by

considering it as a Fp[G]-module. Let σ ∈ G be order p. The ith piece Ji of the
filtration is the image of (σ− 1)iA. Comparing his construction with the one given
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in this section, one sees that quotients of the (Z/pZ)×-coinvariants of J0/Jk give
extensions E/K of type m ≤ k, and that quotients of the (Z/pZ)×-coinvariants of
Jm−1/Jm give extensions E/K of type exactly m. This realizes Iimura’s filtration
as the “dual” to our filtration on H1

Λ(Symp−3V ⊗ Fp(2)).

Remark 3.2.5. Recall that if cj ∈ H1(G,Fp(ij)) for 1 ≤ j ≤ k, then the k-fold

Massey product 〈c1, . . . , ck〉 is a subset of H2(G,Fp(
∑k
j=1 ij)) that contains 0 if

and only if there is an upper-triangular Fp-representation of G whose image has
powers of χ on the diagonal and the cocycles ci on the upper-diagonal. For example,
the matrix (∗∗) witnesses the vanishing of the Massey product 〈b, . . . , b, am−1〉.

In [9], Sharifi works in an Iwasawa-theoretic situation and relates the inverse
limit of class groups to the inverse limits of Massey products. In broad terms,
his Theorem A estabishes an isomorphism between the kth graded piece of an
Iimura-like filtration and the quotient of another group by inverse limits of (k+ 1)-
fold Massey products of the form 〈b, . . . , b, a〉. That is, “if more Massey products
vanish, then the kth piece of Iimura’s filtration is larger”, which is consistent with
the themes of this section.

3.3. An Exact Sequence of Selmer Groups. The goal of this subsection is to
provide some motivation for the definitions of the Selmer conditions Σ and Σ∗ and
to prove the following proposition:

Proposition 3.3.1. Let p be an odd prime. Let 1 ≤ k ≤ p− 3. There is an exact
sequence

0→ H1
N (Fp)→ H1

Λ(SymkV ⊗ Fp(−k))→ H1
Σ(Symk−1V ⊗ Fp(−k))→ 0.

In particular,

h1
Λ(Symp−3V ⊗ Fp(2)) = 1 + h1

Σ(Symp−4V ⊗ Fp(2)).

The last equality follows from the k = p−3 case of the first part of the proposition
combined with part 1 of Theorem 2.3.3, which gives that h1

N (Fp) = 1.
Let 1 ≤ k ≤ p−3 and consider the short exact sequence of GQ,S-representations

0→ Fp → SymkV ⊗ Fp(−k)→ Symk−1V ⊗ Fp(−k)→ 0.

Symk−1V ⊗Fp(−k) has no GQ,S-fixed points, so taking GQ,S-cohomology gives
that the top row of the following commutative diagram is exact.

0 H1
S(Fp) H1

S(SymkV ⊗ Fp(−k)) H1
S(Symk−1V ⊗ Fp(−k))

0 H1
N (Fp) H1

Λ(SymkV ⊗ Fp(−k)) H1
Σ(Symk−1V ⊗ Fp(−k)) 0

To prove Proposition 3.3.1, we need to show:

(1) The image of H1
Λ(SymkV ⊗Fp(−k)) in H1

S(Symk−1V ⊗Fp(−k)) is contained

in the Selmer subgroup H1
Σ(Symk−1V ⊗ Fp(−k)).

(2) The induced map H1
Λ(SymkV ⊗ Fp(−k)) → H1

Σ(Symk−1V ⊗ Fp(−k)) is
surjective.

(3) The kernel of this induced map is precisely H1
N (Fp) ⊆ H1

S(Fp).

The third item is the easiest; we just need that the intersection of the images
of H1

Λ(Symk−1V ⊗ Fp(−k)) and H1
S(Fp) in H1

S(SymkV ⊗ Fp(−k)) is the image of
H1
N (Fp), which follows from Remark 3.2.1 that H1

N (Fp) = H1
Λ(Fp).
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The proof of the remainder of the proposition is broken up into two parts. Lemma
3.3.2 establishes Parts 1 and 2 above with Λ replaced by S and Σ replaced by Σ∗

by considering the local condition at N . To get the corresponding statements for
Λ and Σ, we need to consider the local conditions at p, which is done in Lemmas
3.3.4 and 3.3.5.

Lemma 3.3.2 is stated in slightly more generality than we presently need. To
establish Proposition 3.3.1, we only need the case i = j. The full strength of this
lemma is used in Section 4 when we discuss issues of extending Galois representa-
tions of this kind.

Lemma 3.3.2. For any 1 ≤ i ≤ p− 3, and 0 ≤ j ≤ i, the image of

H1
S(SymjV ⊗ Fp(−i))→ H1

S(Symj−1V ⊗ Fp(−i))

is contained in H1
Σ∗(Symj−1V ⊗Fp(−i)). If in addition we assume that p is regular

or that i = j, then the image is precisely H1
Σ∗(Symj−1V ⊗ Fp(−i)).

Remark 3.3.3. The second statement in the proposition is equivalent to the follow-
ing statement: A GQ,S-representation of dimension j + 1, coming from an element

a ∈ H1
S(Symj−1V ⊗ Fp(−i)), of the form

χj−1−i χj−2−ib · · · χ−i b
j−1

(j−1)! ai−(j−1)

χj−2−i · · · χ−i b
j−2

(j−2)! ai−(j−2)

. . .
...

...
. . . χ−ib ai−1

χ−i ai
1


extends to a GQ,S-representation of dimension j + 2 of the form

χj−i χj−1−ib · · · χ−i b
j

j! ∗
χj−1−i · · · χ−i b

j−1

(j−1)! ai−(j−1)

. . .
...

...
. . . χ−ib ai−1

χ−i ai
1


if and only if a ∈ H1

Σ∗(Symj−1V ⊗ Fp(−i)).

Proof of Lemma 3.3.2. The exact sequence

0→ Fp(j − i)→ SymjV ⊗ Fp(−i)→ Symj−1V ⊗ Fp(−i)→ 0

induces the commutative diagram

H1
S(SymjV ⊗ Fp(−i)) H1

S(Symj−1V ⊗ Fp(−i)) H2
S(Fp(j − i))

H1(GQN
,SymjV ) H1(GQN

,Symj−1V ) H2(GQN
,Fp).
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We are concerned with the image of the first map in the top row, which is the
kernel of the second map in that row. This boundary map is given by taking the
cup product with the class b̃ in

H1
S(Fp(j − i)⊗ (Symj−1V ⊗ Fp(−i))∨)

that realizes SymjV ⊗Fp(−i) as an extension of Symj−1V ⊗Fp(−i) by Fp(j − i).
Locally at N , all of the present modules are self-dual by Lemma 2.2.1 and thus
we might as well think of SymjV as an extension of Fp by Symj−1V . The corre-

sponding class in H1(GQN
,Symj−1V ) giving this extension is the column vector

resN (b̃) = b = [ b
j

j! , · · · ,
b2

2 , b]
T in the notation of Proposition 2.2.2.

That is,

im(H1
S(SymjV ⊗ Fp(−i))→ H1

S(Symj−1V ⊗ Fp(−i)))

is equal to

{a ∈ H1
S(Symj−1V ⊗ Fp(−i)) | a ∪ b̃ = 0}.

Noting that b̃ satisfies the Σ∗-Selmer condition and that resN (b̃) 6= 0, Proposi-
tion 2.4.3 then gives that the latter set is contained in H1

Σ∗(Symj−1V ⊗ Fp(−i)),
and that this containment is an equality if p is regular or if j − i = 0. �

Lemma 3.3.4. Let 1 ≤ k ≤ p−3. Let a ∈ H1
Σ(Symk−1V⊗Fp(−k)) and assume that

a has a lift to H1
S(SymkV ⊗Fp(−k)). Then a has a lift to H1

Λ(SymkV ⊗Fp(−k)).

Proof. Write a = [a1, . . . , ak]T . Choose any lift of a to H1
S(SymkV ⊗Fp(−k)), and

write it as [a0, a1, . . . , ak]T . By assumption, ai|GQp
= 0 for all 1 ≤ i ≤ k. We need

to show that a0 can be modified so that it is unramified when restricted to K(ζp)p.
It can in fact be chosen to be unramified over Qp. The fact that the ai for i ≥ 1

vanish when restricted to GQp
gives that a0|GQp

is a class in H1(GQp
,Fp). This

is a 2-dimensional Fp-vector space, spanned by an unramified class and the class

corresponding to Qp(ζ
(p)
p2 ). But this class is in the image of the global classes, so by

adding an appropriate multiple of this class to a0 we get the desired conclusion. �

Lemma 3.3.5. Let 1 ≤ k ≤ p− 3. Let a be any class

a =


a0

a1

...
ak

 ∈ H1
Λ(SymkV ⊗ Fp(−k)).

Then ai|GQp
= 0 for all i 6= 0. Furthermore, a0 restricts to an unramified homo-

morphism GQp
→ Fp.

Proof. The proof is by strong induction on i, starting with ak. Let M be the
Galois extension of Q defined by the kernel of the representation associated to a.
We begin by examining the GQ,S-representation associated to the image of a in
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H1
S(Symk−1V ⊗ Fp(−k)):

χ−1 χ−2b χ−3 b2

2 · · · χ−k bk−1

(k−1)! a1

χ−2 χ−3b · · · χ−k bk−2

(k−2)! a2

. . .
...

...
χ1−k χ−kb ak−1

χ−k ak
1


Restrict this representation to GQp

. Looking at the bottom 2×2 quotient, we notice
that ak|GQp

gives an extension Lk/Qp(ζp) contained in Mp. If it is nontrivial, its

Galois group is Fp(−k) as a Gal(Qp(ζp)/Qp)-module. Since a satisfies the Selmer
condition Λ, LkK(ζp)p/K(ζp)p is unramified. As −k 6= 1 mod p− 1, Lemma 3.1.4
then applies to conclude that Lk/Qp(ζp) is unramified. Equivalently, ak|GQp

lies

in H1
ur(GQp

,Fp(−k)) which is trivial as k 6= 0 mod p− 1. (Indeed, the unique
unramified Fp-extension of Qp(ζp) is abelian over Qp, and thus does not correspond
to a class in H1

ur(GQp
,Fp(−k)).)

Still restricting to GQp
, we now have that the bottom 3 × 3 quotient of the

representation given by the matrix above isχ1−k χ−kb ak−1

χ−k 0
1

 .

Thus ak−1 ∈ H1(GQp
,Fp(1−k)) and so defines an extension Lk−1/Qp(ζp). If it

is non trivial, it has an action of Gal(Qp(ζp)/Qp) by χ1−k. As above, the extension
Lk−1K(ζp)p/K(ζp)p is unramified, so we conclude that

ak−1 ∈ H1
ur(GQp

,Fp(1− k)) = 0.

We can continue inductively in the same manner to show that ak−i = 0 for
0 ≤ i ≤ k − 1. The two facts we need are that χi−k 6= χ so that Lemma 3.1.4
applies, and that χi−k is nontrivial so that H1

ur(GQp
,Fp(i)) = 0.

To get the final claim about a0, carry out one more step of the induction. Lemma
3.1.4 applies in this case, but the second fact above does not. �

3.4. ClK and Selmer Groups of Characters. Recall the filtration by type on
H1

Λ(Symp−3V ⊗ Fp(2)) considered in Remark 3.2.4. As a corollary to Proposition
3.3.1, we conclude that this filtration descends to a filtration

0 ⊆ H1
Σ(Fp(−1))

⊆ H1
Σ(Sym1V ⊗ Fp(−2))

⊆ H1
Σ(Sym2V ⊗ Fp(−3))

⊆ · · ·
⊆ H1

Σ(Symp−4V ⊗ Fp(2)).

In the spirit of Remark 3.2.4, we think of the kth piece H1
Σ(Symk−1V ⊗Fp(−k))

in the above filtration as corresponding to those E/K of type 2 ≤ m ≤ k + 1, and
the quotient

H1
Σ(Symk−1V ⊗ Fp(−k))

H1
Σ(Symk−2V ⊗ Fp(1− k))
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as corresponding to the extensions of type exactly k + 1, in the sense that its
dimension is the number of inequivalent extensions E/K of type k + 1, where two
such extensions are equivalent if they become the same after taking the compositum
with an extension of strictly smaller type.

With this in mind, we offer the following proposition.

Proposition 3.4.1. The following are true:

(1) h1
Σ(Fp(−1)) ≤ h1

Σ(Symp−4V ⊗ Fp(2)).
(2) If there is an E/K is of type m ≥ 2, then H1

Σ(Fp(1−m)) is nontrivial.

(3) h1
Σ(Symp−4V ⊗ Fp(2)) ≤

∑p−3
i=1 h

1
Σ(Fp(−i)).

Proof. The first part of the proposition follows from the fact that the smallest piece
in the above filtration is

H1
Σ(Fp(−1)) ⊆ H1

Σ(Symp−4V ⊗ Fp(2)).

Now, take the exact sequence

0→ Symk−2V ⊗ Fp(1− k)→ Symk−1V ⊗ Fp(−k)→ Fp(−k)→ 0

and look at the Σ-Selmer subgroups of the long exact sequence in GQ,S-cohomology
to get the exact sequence

0→ H1
Σ(Symk−2V ⊗ Fp(1− k))→ H1

Σ(Symk−1V ⊗ Fp(−k))→ H1
Σ(Fp(−k)).

Thus
H1

Σ(Symk−1V ⊗ Fp(−k))

H1
Σ(Symk−2V ⊗ Fp(1− k))

⊆ H1
Σ(Fp(−k))

which establishes the second part of the proposition: if there is an E/K is of
type m then H1

Σ(Fp(1−m)) is nonzero, and furthermore that the size of this group
is related to the number of inequivalent extensions of type m as discussed above.

The associated graded space of H1
Σ(Symp−4V ⊗Fp(2)) equipped with this filtra-

tion is

gr(H1
Σ(Symp−4V ⊗ Fp(2))) =

p−3⊕
k−1

H1
Σ(Symk−1V ⊗ Fp(−k))

H1
Σ(Symk−2V ⊗ Fp(1− k))

⊆
p−3⊕
k=1

H1
Σ(Fp(−k))

which proves the final part of the proposition. �

4. Lifting Selmer Classes

One might ask if the inequality of Theorem 3.0.1 is ever an equality:

rK
?
= 1 +

p−3∑
i=1

h1
Σ(Fp(−i)).

In Section 6.2, we show that this is true when p = 5. However, it is not true in
general. In particular, see Section 6.3 for a detailed analysis of the possible cases
when p = 7.

We have seen in Section 3 that given an unramified Fp-extension E/K of type
m > 1, we get a GQ,S-representation of dimension m+1 whose image is isomorphic
to the Galois group Gal(M/Q) where M is the Galois closure of E/Q. This gives
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a class in H1
Σ(Symm−2V ⊗Fp(1−m)) whose image in the quotient H1

Σ(Fp(1−m))
is nonzero.

This section will tackle the converse to this construction, namely by providing
criteria for when a nonzero class ai in H1

Σ(Fp(−i)) may be lifted to an element

in H1
Σ(Symi−1V ⊗ Fp(−i)), as such a lift gives a representation of the form (∗∗)

by Proposition 3.3.1, which corresponds to an extension E/K of type i + 1. We
consider two separate methods, one in each of Sections 4.1 and 4.2.

It is worth remarking that in the case i = 1, there are no obstructions to worry
about: The class a1 ∈ H1

Σ(Fp(−1)) lifts directly to a class in H1
Λ(Sym1V ⊗Fp(−1))

which gives an extension E/K of type 2. (This is the k = 1 case of Proposition
3.3.1, or equivalently the first part of Proposition 3.4.1.) This is the method that
Wake–Wang-Erickson use to prove the lower bound in Theorem 3.0.1, which they
state as the following proposition.

Proposition 4.0.1 ([12], Proposition 11.1.1). If h1
Σ(Fp(−1)) 6= 0 then rK ≥ 2.

Remark 4.0.2. The question of lifting representations is related to the vanishing of
higher Massey products 〈b, . . . , b, ai〉 in GQ,S-cohomology. In [9], Sharifi has shown
that certain higher Massey products of this type vanish in GQ-cohomology.

For example, one way of interpreting the results of Section 4.2 is in terms of the
vanishing of certain triple Massey products in GQ,S-cohomology. Theorem 4.2.1
could be restated as saying that the triple GQ,S-Massey product 〈b, b, a〉 vanishes,

where a is a class that spans H1
Σ(Fp(

p−1
2 )).

4.1. Climbing the Ladder. We approach the problem of lifting the classes in
H1

Σ(Fp(−i)) one dimension at a time. Namely, we will give a sequence of lemmas

which provide criteria for when a class in H1
Σ(Symj−1V ⊗ Fp(−i)) may be lifted

“one rung up the ladder” to a class in H1
Σ(SymjV ⊗ Fp(−i)), for 1 ≤ 1 ≤ p − 2

and 1 ≤ j ≤ i − 1. Lemma 3.3.2 shows that one obstruction to this lifting is
the irregularity of p. Therefore we assume for simplicity for the remainder of this
section that p is regular. Given this assumption, Lemma 3.3.2 tells us that every
class in H1

Σ(Symj−1V ⊗ Fp(i)) in the range of j and i we consider has a lift to

H1
S(SymjV ⊗ Fp(−i)), so we are tasked with showing that there are lifts which

satisfy the local conditions of the Selmer condition Σ.
Our strategy is as follows. Recall the short exact sequence of GQ,S-modules

0→ Fp(j − i)→ SymjV ⊗ Fp(−i)→ Symj−1V ⊗ Fp(−i)→ 0

which induces the following piece of the long exact sequence in GQ,S-cohomology

0→ H1
S(Fp(j − i))→ H1

S(SymjV ⊗ Fp(−i))→ H1
S(Symj−1V ⊗ Fp(−i))

as H0(GQ,S ,Symj−1V ⊗ Fp(−i)) = 0 for the i and j considered.

Thus, if a is a fixed class in H1
Σ∗(Symj−1V ⊗ Fp(−i)) which has a lift ã to

H1
S(SymjV ⊗ Fp(−i)), we may modify ã by adding classes in H1

S(Fp(j − i)) in an
attempt to produce others lifts of a which satisfy the local conditions of Σ. The
following lemmas give conditions for when such modification is possible.

Lemma 4.1.1. Let p be regular. Suppose that a ∈ H1
Σ∗(Symj−1V ⊗ Fp(−i)), and

that

h1
Σ∗(Fp(j − i)) < h1

S(Fp(j − i))
Then there is a lift of a to H1

Σ∗(SymjV ⊗ Fp(−i)).
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Proof. The proof is essentially a diagram chase. Consider the following commuta-
tive diagram. For space considerations, we abbreviate SymaV ⊗ Fp(b) as V a(b).

0 0

H1
Σ∗(Fp(j − i)) H1

Σ∗(V
j(−i))

0 H1
S(Fp(j − i)) H1

S(V j(−i)) H1
Σ∗(V

j−1(−i)) 0

H1(GQN
,Fp(j − i))/〈b〉 H1(GQN

, V j(−i))/〈b〉∼

The middle row is exact by Lemma 3.3.2, and Proposition 2.2.2 gives that the
bottom arrow is an isomorphism and that the two groups are both 1-dimensional,
as well as the fact that the two columns are exact.

The lemma is equivalent to the statement that the top-right diagonal arrow

H1
Σ∗(SymjV ⊗ Fp(−i))→ H1

Σ∗(Symj−1V ⊗ Fp(−i))

is surjective. We first claim that this is implied by the surjectivity of the bottom-left
diagonal arrow

H1
S(Fp(j − i))→ H1(GQN

,SymjV ⊗ Fp(−i))/〈b〉.

Indeed, suppose that diagonal map is surjective and let ã be any lift of a
to H1

S(SymjV ⊗ Fp(−i)). Let c be any class in H1
S(Fp(j − i)) whose image in

H1(GQN
,SymjV ⊗ Fp(−i))/〈b〉 is equal to the image of ã. Then ã − c is a lift of

a that lies in H1
Σ∗(SymjV ⊗ Fp(−i)).

We are reduced to showing that the bottom-left diagonal arrow is surjective.
Because the bottom horizontal arrow is an isomorphism, it suffices to show that
the vertical map

H1
S(Fp(j − i))→ H1(GQN

,Fp)/〈b〉
is surjective. As the latter group is 1-dimensional, we just need to show that this
map is nonzero, which follows from the assumption

h1
Σ∗(Fp(j − i)) < h1

S(Fp(j − i)). �

Lemma 4.1.2. Let p be regular. Suppose that a ∈ H1
Σ(Symj−1V ⊗ Fp(−i)) where

j − i 6= 0, 1 mod p− 1, and that

h1
N (Fp(j − i)) < h1

S(Fp(j − i)).

Then there is a lift of a to H1
S(SymjV ⊗Fp(−i)) which is trivial when restricted to

GQp
.

Proof. The argument is similar to the previous one. Let H be the preimage of
H1

Σ(Symj−1V ⊗ Fp(−i)) under the map

H1
S(SymjV ⊗ Fp(−i))→ H1

Σ∗(Symj−1V ⊗ Fp(−i)).

We will reference the following diagram, where the local condition “split at p” is
abbreviated “spl p”. Because j−i 6= 0 mod p− 1, we have H1

ur(GQp
,Fp(j−i)) = 0,
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and thus H1
N (Fp(j−i)) = H1

spl p(Fp(j−i)). As above, we abbreviate SymaV ⊗Fp(b)

as V a(b).

0 0

H1
N (Fp(j − i)) H1

spl p(V
j(−i))

0 H1
S(Fp(j − i)) H H1

Σ(V j−1(−i)) 0

H1(GQp ,Fp(j − i)) H1(GQp , V
j(−i)) H1(GQp , V

j−1(−i))

0

φ

We first remark that this diagram makes sense: Each of H1
spl p(SymjV ⊗Fp(−i))

and H1
S(Fp(j − i)) lands in H under its respective map to H1

S(SymjV ⊗ Fp(−i)).
Note that the middle row is exact by Lemma 3.3.2 and the two columns are exact
by definition. Similarly, the vertical map in the final column is 0.

As in the proof of Lemma 4.1.1, we want to show that the top-right diagonal map
is surjective. Note that the image of the bottom-left diagonal arrow is contained
in the kernel of φ. We first argue that if this map surjects onto kerφ, then the
top-right diagonal map is surjective as well.

Indeed, suppose that the diagonal map

H1
S(Fp(j − i))→ kerφ

is surjective and let a ∈ H1
Σ(Symj−1V ⊗ Fp(−i)). Choose any lift ã of a to H

and let a be the image of ã in H1(GQp ,SymjV ⊗ Fp(−i)). Since the right-hand

vertical map is 0, we know that a ∈ kerφ. If c ∈ H1
S(Fp(j − i)) is a class whose

image in kerφ under the diagonal map is a, then ã − c is a lift of a that lies in
H1

spl p(SymjV ⊗ Fp(−i)).
Now, because

kerφ = im(H1(GQp
,Fp(j − i))→ H1(GQp

,SymjV ⊗ Fp(−i))),

we are reduced to showing that the vertical map

H1
S(Fp(j − i))→ H1(GQp

,Fp(j − i))

is surjective.
Since j − i 6= 0, 1 mod p− 1, we have that the latter group is 1-dimensional by

the Local Euler Characteristic Formula, so the surjectivity of this map is equivalent
to the map being nonzero. As the kernel of this map is H1

N (Fp(j − i)), this final
statement follows from the assumption

h1
N (Fp(j − i)) < h1

S(Fp(j − i)). �

Lemma 4.1.3. Let p be regular. Suppose that a ∈ H1
Σ(Symj−1V ⊗ Fp(−i)) where

j− i 6= 0, 1 mod p− 1, that there is a lift of a to ∈ H1
Σ∗(SymjV ⊗Fp(−i)), and that

h1
Σ(Fp(j − i)) < h1

Σ∗(Fp(j − i)).

Then there is a lift of a to ∈ H1
Σ(SymjV ⊗ Fp(−i)).
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Proof. The argument is nearly identical to the one above. Let H ′ be the preimage
of H1

Σ(Symj−1V ⊗ Fp(−i)) under the map

H1
Σ∗(SymjV ⊗ Fp(−i))→ H1

Σ∗(Symj−1V ⊗ Fp(−i)).

Now, repeat the argument given in Lemma 4.1.2 in reference to the diagram

0 0

H1
Σ(Fp(j − i)) H1

Σ(V j(−i))

0 H1
Σ∗(Fp(j − i)) H ′ H1

Σ(V j−1(−i)) 0

H1(GQp
,Fp(j − i)) H1(GQp

, V j(−i)) H1(GQp
, V j−1(−i))

0

where, as before, SymaV ⊗ Fp(b) is abbreviated to V a(b). �

The final lemma of this section is just a concatenation of Lemmas 4.1.1 and 4.1.3.
We state it as its own lemma for easier reference later.

Lemma 4.1.4. Let p be regular. Suppose that a ∈ H1
Σ(Symj−1V ⊗ Fp(−i)), and

that

h1
Σ(Fp(j − i)) < h1

Σ∗(Fp(j − i)) < h1
S(Fp(j − i)).

Then there is a lift of a to H1
Σ(SymjV ⊗ Fp(−i)).

As p is regular, the condition in Lemma 4.1.4 can only occur when j − i is odd,
h1

Σ(Fp(j − i)) = 0, and h1
Σ∗(Fp(j − i)) = 1; see Theorem 2.3.5.

Remark 4.1.5. The assumption that p is regular in each of the lemmas in this
section could be replaced with the more general assumption that there exists a lift
of a ∈ H1

Σ(Symj−1V ⊗ Fp(−i)) to H1
S(SymjV ⊗ Fp(−i)). We will not need that

generality.

4.2. Lifting Classes in H1
Σ(Fp(

p−1
2 )). In this section we will prove that in a

special case, some classes in a Σ-Selmer group of a character always lift to the
Σ∗-Selmer group of a 2-dimensional representation. In particular we will be able
to apply this result in situations where it is not possible to use Lemma 4.1.1 to
show that a class lifts into a Σ∗-Selmer group. Our standing assumptions for this
section will be that p is regular and H1

Σ(Fp(
p−1

2 )) 6= 0. In addition to ensuring that

classes in H1
Σ(Fp(

p−1
2 )) always lift to H1

S(V (p−1
2 )) by Lemma 3.3.2, the regularity

assumption provides access to the full strength of the results of Sections 2.3 and

2.4. Note that the character χ
p−1
2 is its own inverse.

Theorem 4.2.1. Assume that p is regular, and that H1
Σ(Fp(

p−1
2 )) 6= 0. If a class

a ∈ H1
Σ(Fp(

p−1
2 )) is nonzero, and if

[
a′

a

]
is any lift of a to H1

S(V (p−1
2 )), then[

a′

a

]
∈ H1

Σ∗(V (p−1
2 )).
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The idea behind the proof of this theorem is to work with a related representation

W which allows us to exploit the self-inverse property of χ
p−1
2 to determine the Σ-

Selmer group of a twist of W explicitly. Taken together with Theorem 2.1.2, we
will be able to use this explicit determination of a Selmer group to get positive

information about the local properties of the class

[
a′

a

]
(namely, that it is always

in the Σ∗-Selmer group). We define the representation W that will be used, and
then prove the theorem over the course of several lemmas.

We let W be the 2-dimensional Fp-vector space on which GQ,S acts by(
χ
p−1
2 a

0 1

)
where a is a nonzero class in H1

Σ(Fp(
p−1

2 )). By Proposition 2.4.3 we know that

b ∪ a = 0, hence a lifts to a class

[
a′

a

]
∈ H1

S(V (p−1
2 )). In other words there is

a 3-dimensional representation of GQ,S (which is an extension of Fp by V (p−1
2 ))

defined by

(†)

χ p+1
2 χ

p−1
2 b a′

0 χ
p−1
2 a

0 0 1

 .

Note that the representation (†) is also an extension of W by χ
p+1
2 . Taking the

contragredient of the representation (†) and twisting by χ−
p+1
2 yields another 3-

dimensional representation of GQ,S defined by

(‡)

χ p+1
2 χa ab− a′

0 χ −b
0 0 1

 .

Note that this representation is an extension of Fp by W (1), which is to say that[
ab− a′
−b

]
∈ H1

S(W (1)).

Both 3-dimensional representations share the same kernel; the operation of tak-

ing contragredient and twisting by χ−
p+1
2 doesn’t change the kernel. Let L/Q be

the fixed field of this kernel. We have a diagram of fields

L

K(ζp) La

Q(ζp)

Q

where La is the fixed field of the kernel of the representation W , which is Galois over
Q with Galois group isomorphic to the semi-direct product Z/pZo (Z/pZ)× where

(Z/pZ)× acts by χ
p−1
2 . (This is the group Γ p−1

2
in the notation of Theorem 3.1.6.)

The representation (†) is a realization of Gal(K(ζp)/Q) acting on Gal(L/K(ζp)),
whereas the representation (‡) is a realization of Gal(La/Q) acting on Gal(L/La).
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This commonality between the representations (†) and (‡) and their associated

cohomology classes

[
a′

a

]
and

[
ab− a′
−b

]
allows us to relate the local behavior of these

classes.

Lemma 4.2.2. The class

[
a′

a

]
is in H1

Σ∗(V (p−1
2 )) if and only if the class

[
ab− a′
−b

]
is in H1

Σ∗(W (1)).

Proof. Noting that a is necessarily a nonzero multiple of b locally at N by Remark
2.3.8, we see that W (1) and V (p−1

2 ) are isomorphic representations locally at N .
In particular the results of Section 2.2 still apply to the twists of W .

In the case of both V (p−1
2 ) and W (1), the Σ∗ condition is just that classes vanish

when restricted to KN . Interpreting this in terms of the Galois extension L/Q cut
out by both classes, we see that either class satisfies the Σ∗ condition if and only
if N is split in L/LaK(ζp), as we know that locally at N the extension LaK(ζp) is
KN . �

We will use the fact that χ
p−1
2 is self-inverse to show that we have an equality

H1
Σ∗(W (1)) = H1

S(W (1)), hence the equivalent statements of the previous lemma
will always hold. Since we will be applying Theorem 2.1.2 to compute h1

Σ∗(W (1)),
we will need the fact that

W (1)∗ ∼= W (p−1
2 ).

We start by determining the dimensions of H1
S(W (1)) and H1

S(W (p−1
2 )). As this

result will depend on whether p ≡ 1 or 3 mod 4 we will use the notation

sp =

{
1 p ≡ 1 mod 4

0 p ≡ 3 mod 4.

Lemma 4.2.3. The classes generating H1
S(W (1)) and H1

S(W (p−1
2 )) are as follows.

(1) We have that 2 + sp ≤ h1
S(W (1)) ≤ 3 + sp. The classes[

x
0

]
,

[
∗
b

]
for x ∈ H1

S(Fp(
p+1

2 )) always span a (2 + sp)-dimensional subspace. Let b′

be the class of p in H1
S(Fp(1)). The dimension h1

S(W (1)) is equal to 3 + sp
if and only if p is a pth power modulo N , in which case the final dimension
is spanned by some lift of b′, [

∗
b′

]
.

(2) We have that 3 ≤ h1
S(W (p−1

2 )) ≤ 4. The classes[
y
0

]
,

[
a2/2
a

]
for y ∈ H1

S(Fp) span a 3-dimensional subspace, and h1
S(W (p−1

2 )) = 4 if

and only if p ≡ 3 mod 4 and H1
Σ∗(Fp(

p−1
2 )) = H1

S(Fp(
p−1

2 )). In this case,

if z is a class spanning H1
p (Fp(

p−1
2 )) then the final dimension is spanned

by some lift of z, [
∗
z

]
.
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Proof. For the first part of this lemma, consider the following piece of the long
exact sequence in GQ,S-cohomology:

0 = H0
S(Fp(1))→ H1

S(Fp(
p+1

2 ))→ H1
S(W (1))→ H1

S(Fp(1))
a∪−−→ H2

S(Fp(
p+1

2 )).

The 1 + sp dimensions of H1
S(Fp(

p+1
2 )) give classes in H1

S(W (1)) immediately. The

classes b, b′, which span H1
S(Fp(1)) lift to H1

S(W (1)) if and only if their cup product
with a vanishes.

For the class b, we know that a∪b = 0 by Proposition 2.4.3, as a ∈ H1
Σ(Fp(

p−1
2 )).

Since a is a nonzero multiple of b when viewed as a class for GQN
, we have that

a∪ b′ = 0 if and only if b′ is a multiple of b locally at N , again by Proposition 2.4.3.
As b′ is unramified at N , the only way for it to be a multiple of b locally at N is
if N is split in the extension defined by b′, which is Q(ζp, p

1/p). N splits in this
extension if and only if p is a pth power in Q×N , which happens if and only if p is

a pth power in F×N . Thus the class b′ lifts to H1
S(W (1)) if and only if p is a pth

power modulo N .
The proof for the second part of the lemma is similar, using the long exact

sequence for W (p−1
2 ):

0 = H0
S(Fp(

p−1
2 ))→ H1

S(Fp)→ H1
S(W (p−1

2 ))→ H1
S(Fp(

p−1
2 ))

a∪−−→ H2
S(Fp).

The 2 dimensions of H1
S(Fp) give classes in H1

S(W (p−1
2 )) immediately. The class a

always lifts to H1
S(W (p−1

2 )), as we certainly have a ∪ a = 0 as a ∈ H1
Σ(Fp(

p−1
2 )).

If p ≡ 1 mod 4, a spans H1
S(Fp(

p−1
2 )) and we conclude that h1

S(W (p−1
2 )) = 3. If

p ≡ 3 mod 4, let z be a class spanning H1
p (Fp(

p−1
2 )) (so a, z together necessarily

span H1
S(Fp(

p−1
2 )) which is 2-dimensional, see part 2 of Theorem 2.3.5). We have by

Proposition 2.4.3 that a∪z = 0 if and only if z ∈ H1
Σ∗(Fp(

p−1
2 )), hence we conclude

that z lifts to H1
S(W (p−1

2 )) if and only if H1
Σ∗(Fp(

p−1
2 )) = H1

S(Fp(
p−1

2 )). �

Lemma 4.2.4. H1
Σ∗(W (1)) = H1

S(W (1)).

Proof. Applying Theorem 2.1.2 to H1
Σ∗(W (1)) produces the relation:

h1
Σ∗(W (1)) = 1 + sp + h1

Σ(W (p−1
2 )),

where we have used that W ∼= V as GQN
-representations so Proposition 2.2.3

applies to the twists of W . We determine h1
Σ(W (p−1

2 )) explicitly based on our

knowledge of the classes spanning it. Let c, c′ be the classes spanning H1
S(Fp),

which correspond respectively to Q(ζ
(p)
N ) and Q(ζ

(p)
p2 ).

• the class

[
a2/2
a

]
is always in H1

Σ(W (p−1
2 )), since a itself is in H1

Σ(Fp(
p−1

2 )).

• the class

[
c′

0

]
is never in H1

Σ(W (p−1
2 )) as it is ramified at p.

• the class

[
c
0

]
is in H1

Σ∗(W (p−1
2 )) by Lemma 2.2.4, and is in H1

Σ(W (p−1
2 ))

if and only if p is split in Q(ζ
(p)
N ), which happens if and only if p is a pth

power mod N , since Gal(Q(ζ
(p)
N )/Q) is canonically (Z/NZ)×/(Z/NZ)×p.

• if p ≡ 3 mod 4, there is a class z ∈ H1
p (Fp(

p−1
2 )) which may or may not lift

to H1
S(W (p−1

2 )); this class will never lift to H1
Σ(W (p−1

2 )) as it is ramified
at p.
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Putting this description together with the Lemma 4.2.3 we have that:

p is a pth power mod N =⇒ h1
Σ(W (p−1

2 )) = 2 and h1
S(W (1)) = 3 + sp

=⇒ h1
Σ∗(W (1)) = 1 + sp + 2 = 3 + sp = h1

S(W (1))

p is not a pth power mod N =⇒ h1
Σ(W (p−1

2 )) = 1 and h1
S(W (1)) = 2 + sp

=⇒ h1
Σ∗(W (1)) = 1 + sp + 1 = 2 + sp = h1

S(W (1))

Thus in all cases we have h1
Σ∗(W (1)) = h1

S(W (1)); since H1
Σ∗(W (1)) ⊆ H1

S(W (1))
we conclude that these groups are equal. �

Proof of Theorem 4.2.1. By Lemma 4.2.2, to show that

[
a′

a

]
∈ H1

Σ∗(V (p−1
2 )) it

suffices to show that

[
ab− a′
−b

]
(which a priori is just an element of H1

S(W (1))) is

an element of H1
Σ∗(W (1)). Lemma 4.2.4 shows that H1

Σ∗(W (1)) = H1
S(W (1)), so

this latter condition is immediate. �

Remark 4.2.5. The property that χ
p−1
2 is self-inverse is crucial to this argument,

and similar results are not true for other powers of χ. See Section 6.3 for examples
where the automatic lifting of classes in H1

Σ(Fp(i)) to H1
Σ∗(V (i)) fails.

5. Effective Criteria for H1
Σ(Fp(−i)) 6= 0

Our goal in this section is to find an effective method for determining whether
the various H1

Σ(Fp(−i)), 1 ≤ i ≤ p − 3 are zero or not. The cases i even and i
odd are treated separately. For each i, under a regularity assumption, we relate the
question of whether or not H1

Σ(Fp(−i)) = 1 to whether or not a certain quantity
in F×N is a pth power.

5.1. A Criterion for H1
Σ(Fp(−i)) 6= 0, i Odd. Let M = N−1

p , and for any

positive integer i define

Si =

p−1∏
k=1

((Mk)!)k
i

.

Our goal in this section is to prove the following theorem.

Theorem 5.1.1. Let p be an odd prime, 1 ≤ i ≤ p − 4 be odd, and assume that
(p,−i) is a regular pair. Then Si is a pth power in F×N if and only if H1

Σ(Fp(−i)) 6= 0

The general strategy is as follows: Recall from part 2 of Theorem 2.3.5 that

h1
Σ(Fp(−i)) ≤ h1

N (Fp(−i)) = 1.

We will show that the vanishing of Si in F×N/F
×p
N is equivalent to the statement

that the nontrivial class in H1
N (Fp(−i)) satisfies the Selmer condition Σ. To do

this, we will produce an element G−i ∈ Q(ζp)
× whose local properties will control

the local properties of the nontrivial class in H1
N (Fp(−i)).

Remark 5.1.2. The existence of such an element in a slightly different formulation
is shown by Lecouturier in [6]. Lecouturier computes the image of this element in

Q×N/Q
×p
N using the Gross-Koblitz formula and N -adic Gamma function, and the

quantity Mi =
∏N−1
k=1

∏k−1
a=1 k

ai arises as the image of this element in the factor

Z×N/Z
×p
N of Q×N/Q

×p
N . His results are not stated in terms of the Selmer groups
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H1
Σ(Fp(−i)); instead he relates the vanishing of Mi directly to Iimura’s filtration

on the class group of K(ζp) (see Remark 3.2.4) in order to deduce bounds on the
rank of the class group of K.

We include a proof of Theorem 5.1.1 that is better suited to our formulation
using Selmer groups. The quantities Mi of Lecouturier play the same role as the
Si in our statement of Theorem 5.1.1; we show in Lemma 5.2.1 that Mi = S−1

i as

elements of F×N/F
×p
N .

Remark 5.1.3. One can compare the role of Si in Theorem 5.1.1 to the role of
classical Bernoulli numbers in the theorems of Herbrand and Ribet on class groups
of cyclotomic fields. The question of Bernoulli numbers being divisible by p is
replaced by the question of whether or not the invariants Si are pth powers. Recall
that when i is odd, Bi = 0. Similarly, the invariant Si for even i is always a pth
power, as the following computation in F×N/F

×p
N shows. If i = 2j is even, then

S2
2j =

p−1∏
k=1

((Mk)!)k
2j

((M(p− k))!)(p−k)2j

=

p−1∏
k=1

((Mk)!(M(p− k))!)k
2j

= 1

where the last step follows from the fact that a!(N − 1 − a)! ≡ ±1 ∈ F×N for any
a 6≡ 0. Since p is odd, the fact that S2

i is a pth power means that Si itself must be
a pth power.

While Theorem 5.1.1 requires a regularity assumption, the setup does not. Until
the beginning of the proof of Theorem 5.1.1, we make no regularity assumptions.

For any prime n|N of Q(ζp), define

ιn : Q(ζp)→ Q(ζp)n = QN .

Note that if n′ = [a]n for a ∈ (Z/pZ)×, then

ιn′ = ι[a]n = ιn ◦ [a−1].

Now, fix a prime n|N , and set ι = ιn, and ιa = ι[a]n for a ∈ (Z/pZ)×.

Let c 6= 0 be a class in H1
N (Fp(−i)). This class c defines an extension L/Q(ζp)

which is Galois over Q with Galois group Γ−i = Z/pZ oχ−i (Z/pZ)×, and c lies
in H1

Σ(Fp(−i)) if and only if L localized at a prime above n is either trivial or
isomorphic to KN .

The extension L/Q(ζp) corresponds, by global class field theory, to a homomor-
phism

ψc : A×Q(ζp) → Fp

which factors through the χ−i-eigenspace of the p-coinvariants of the double quo-
tient

Q(ζp)
×\A×Q(ζp)/U

where U is the subgroup

U =
∏
n′|N

(1 + n′OQ(ζp)n′
)×

∏
q-N

O×Q(ζp)q
× (Q(ζp)⊗R)×.

We call this eigenspace C−i.
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Identifying Q(ζp)n with QN , the extension of QN given by localizing L at a
prime above n is, by local class field theory, determined by a map ψc,N : Q×N → Fp.

This map is the composition of the inclusion j : Q(ζp)
×
n → A×Q(ζp) and the map ψc.

This is summarized in the following commutative diagram:

Q×N/Q
×p
N

C−i = (Q(ζp)
×\A×Q(ζp)/U)χ

−i

p Fp

j ψc,N

ψc

The kernel of ψc,N is the norm subgroup of the extension of QN coming from L.

As Q×N/Q
×p
N is 2-dimensional, this extension is either trivial or isomorphic to KN

(i.e., c ∈ H1
Σ(Fp(−i))) if and only if N is in the kernel of ψc,N .

Remark 5.1.4. The above construction realizes the idele group C−i as the dual
of the cohomology group H1

N (Fp(−i)). Indeed, by class field theory as above,
every element of the cohomology group corresponds to a map ψc : C−i → Fp,
and conversely every such homomorphism gives an Fp-extension of Q(ζp) that is
Galois over Q with Galois group Γ−i and that satisfies the local conditions to lie
in H1

N (Fp(−i)).
Similarly, one identifies Q×N/Q

×p
N with the dual of H1(GQN

,Fp). Then the map
j defined above is nothing more than the dual to the restriction map

resN : H1
N (Fp(−i))→ H1(GQN

,Fp).

We turn now to the map j. Under certain conditions, we will prove that the
kernel of j is 1-dimensional, spanned by an element G−i that will be related to Si.

Lemma 5.1.5. Let i 6≡ −1 mod p− 1 be odd. Suppose that there exists an element
G−i ∈ Z[ζp] which satisfies the following properties:

(a) G−i lies in the χ−i-eigenspace of Q(ζp)
×/Q(ζp)

×p.
(b) The ideal (G−i) of Z[ζp] is divisible only by prime ideals dividing N .

Then ι(G−i) is in the kernel of j.

Proof. We will show that j(ι(G−i)) = 0 in the idelic quotient C−i by showing that
j(ι(G−i)) is equal to the diagonal embedding of the global element G−i in the χ−i-
eigenspace of the p-coinvariants of A×Q(ζp)/U , which we denote by C ′−i.

Note that since G−i is a unit at all primes not dividing N by property (b), it will
suffice to work only in the coordinates of the ideles above N , as the quotient by U
kills all units at primes not dividing N and all information at the infinite places.
We index the primes above N relative to our fixed choice n|N and the Galois action
on primes; namely the set of primes above N is

{[a]n | a ∈ (Z/pZ)×}.
Note that an element a′ ∈ (Z/pZ)× permutes the coordinates above N , sending
the [a]n-coordinate to the [a′a]n-coordinate. The projection operator

Pχ−i :
(
A×Q(ζp)/U

)
p
→ C ′−i

is given by the formula

Pχ−i =
∑

a∈(Z/pZ)×

χ−i(a−1)[a]
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where we have used additive notation for the group ring Fp[(Z/pZ)×], despite it
acting on the multiplicative groups of ideles. With this notation set up, we are
trying to show that

Pχ−i(j(ι(G−i))) = Pχ−i((ι(G−i), 1, . . . , 1))

is equal the diagonal embedding of G−i:
(ιa(G−i))a∈(Z/pZ)× .

We compute directly with the formula for Pχ−i that in C ′−i we have

Pχ−i(j(ι(G−i))) = (χ−i(a−1)ι(G−i))a∈(Z/pZ)×

= (ι(Gχ
−i(a−1)
−i ))a∈(Z/pZ)× .

Now, by property (a), we know that Gχ
−i(a−1)
−i = [a−1]G−i, hence

Pχ−i(j(ι(G−i))) = (ι([a−1]G−i))a∈(Z/pZ)×

= (ιa(G−i))a∈(Z/pZ)×

where we have used that ιa = ι ◦ [a−1]. �

Now we turn our attention to constructing such a G−i and relating it to the
invariant Si.

Let A = Q(ζp, ζ
(p)
N ) and let B = Q(ζp, ζN ). For any character η

η : Gal(B/Q(ζp)) ∼= (Z/NZ)× → µp

of order p, define the Gauss sum

gη =

N−1∑
k=1

η(k)ζkN .

Let N be the prime above n in B (so we have NN−1 = n). The Gauss sums gη
satisfy the following properties

• gη is an element of the ring of integers of A, and is divisible only by primes
above N .
• Since Gal(Q(ζp)/Q) = (Z/pZ)× acts on OA, we have that for a ∈ (Z/pZ)×

[a]gη = gηa .

• If [b] ∈ Gal(B/Q(ζp)) = (Z/NZ)×, then

[b]gη = η(b−1)gη.

• gpη ∈ Q(ζp).

Fix the choice of η so that the composite map

(Z/NZ)×
η→ µp ↪→ (Z[µp]/n)× = (Z/NZ)×

is the map k 7→ k−
N−1
p , and let τ : (Z/pZ)× → Z \ {0} be a set map which satisfies

that the composite

(Z/pZ)×
τ→ Z \ {0} → (Z/p2Z)×

is the map x 7→ xp. In particular, τ(xy) ≡ τ(x)τ(y) mod p2. Define

G−i =
∏

a∈(Z/pZ)×

([a]gη)τ(ai) =
∏

a∈(Z/pZ)×

(gηa)τ(ai).
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To establish the desired properties of the element of G−i, we will need to examine
the expansion of ι(G−i) in terms of the uniformizer of Q(ζp)n = QN , and to do this
we will need the expansion of a Gauss sum in terms of a uniformizer. This latter
expansion is computed in the following lemma.

Lemma 5.1.6. Let 1 ≤ r < p, M = (N − 1)/p, and m = rM . Let

I : B → BN = QN (ζN )

be an embedding extending ι. Note that π = 1 − ζN is a uniformizer in QN (ζN ).
Then we have that

I(gηr ) = (−1)m+1π
m

m!
+O(πm+1).

Proof. By definition, we have

I(gηr ) =

N−1∑
k=1

η(k)r(1− π)k

=

N−1∑
k=1

η(k)r − π
N−1∑
k=1

(
k

1

)
η(k)r + π2

N−1∑
k=2

(
k

2

)
η(k)r − . . .+ πN−1

=

N−1∑
j=0

(−1)jπj
N−1∑
k=1

(
k

j

)
η(k)r

where we take
(
k
j

)
= 0 when k < j. If we expand the binomial coefficients as

polynomials in k, each term in this last sum will be of the form

(−1)jπj
a

j!

N−1∑
k=1

klη(k)r

for some l < j and integer a. Note that

N−1∑
k=1

klη(k)r =

{
O(πN−1) j 6= m

−1 +O(πN−1) j = m

since n = NN−1 and we have that

N−1∑
k=1

klη(k)r ≡
N−1∑
k=1

kl−m mod n

using that ηr is the map k 7→ k−m modulo n.
Therefore every term in the sum for I(gηr ) will be O(πN−1) until the first term

involving
∑N−1
k=1 kmη(k)r. This term is

(−1)mπm
1

m!

N−1∑
k=1

kmη(k)r.

All other terms in the sum are O(πm+1), so we conclude that

I(grη) = (−1)m+1π
m

m!
+O(πm+1). �
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Lemma 5.1.7. The element G−i is in Q(ζp)
×, and satisfies properties (a) and (b)

of Lemma 5.1.5. Furthermore, as elements of Q×N/Q
×p
N , we have

ι(G−i) = NB1,χiS−1
i

where B1,χi is the generalized Bernoulli number.

Proof. For b ∈ Gal(B/Q(ζp)) = (Z/NZ)×, we have that

[b]G−i =
∏

a∈(Z/pZ)×

[b](gηa)τ(ai)

=
∏

a∈(Z/pZ)×

(ηa(b−1)gηa)τ(ai)

= G−i
∏

a∈(Z/pZ)×

ηaτ(ai)(b−1)

= G−i · η(
∑
a∈(Z/pZ)× aτ(ai))(b−1)

= G−i.

The last equality follows from the fact that the character η has order p: This
lets us work mod p in the exponent, so we can use that τ(ai) ≡ ai mod p and
that

∑
a∈(Z/pZ)× a

i+1 ≡ 0 mod p when i 6≡ −1 mod p− 1. This establishes that

G−i ∈ Z[ζp]. Along with the properties of the Gauss sums gη, we conclude that G−i
is only divisible by the primes above N , which is to say it satisfies property (b) of
Lemma 5.1.5.

To show that G−i satisfies property (a) of Lemma 5.1.5, we recall that τ satisfies
τ(c−i) ≡ χ−i(c) mod p and verify that for c ∈ (Z/pZ)×,

[c]G−i =
∏

a∈(Z/pZ)×

[c]([a]gη)τ(ai)

=
∏

a∈(Z/pZ)×

([ac]gη)τ(ai)

=
∏

a′∈(Z/pZ)×

([a′]gη)τ(a′i)τ(c−i)

= Gτ(c−i)
−i

= Gχ
−i(c)
−i

where all equalities are taken to be in Q(ζp)
×/Q(ζp)

×p. In the third equality, we

have used that gpη ∈ Q(ζp)
×, so gp

2

η ∈ Q(ζp)
×p which means we can work mod p2

in the exponent. For the final equality, we recall from above that G−i ∈ Q(ζ×p ) and
thus we can take the exponent mod p.

What remains is to show that ι(G−i) = NB1,χiS−1
i in Q×N/Q

×p
N .

Using Lemma 5.1.6, we can write

ι(G−i) =
∏

a∈(Z/pZ)×

I(gηa)τ(ai)

=

p−1∏
r=1

(
(−1)rM+1 πrM

(rM)!
+O(πrM+1)

)τ(ri)
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=

(
p−1∏
r=1

(
(−1)rM+1

(rM)!

)τ(ri)

+O(π)

)
π
∑p−1
r=1 rMτ(ri)

=

(
p−1∏
r=1

(
(−1)rM+1

(rM)!

)τ(ri)
)

(1 +O(π))π
∑p−1
r=1 rMτ(ri)

in QN (ζN )×. Notice that the first term in this product lies in Q×N and is equal to

S−1
i in Q×N/Q

×p
N .

To understand the final term, we first write

πN−1

N
=

1

N
(1− ζN )N−1

=
1

N
Norm

QN (ζN )
QN

(1− ζN )

N−1∏
i=1

1− ζN
1− ζiN

=

N−1∏
i=1

(1 + ζN + · · ·+ ζi−1
N )−1

≡

(
N−1∏
i=1

i

)−1

mod π

≡ −1 mod π

as ZN [ζN ]/(π) = FN . Thus πN−1 = N(−1 +O(π)) and we can use this to write

π
∑p−1
r=1 rMτ(ri) = π(N−1) 1

p

∑p−1
r=1 rτ(ri)

= ±N
1
p

∑p−1
r=1 rτ(ri)(1 +O(π)).

Working modulo p in the exponent, we can substitute τ(ri) with χ(ri). This

new exponent 1
p

∑p−1
r=1 rχ(ri) is exactly the generalized Bernoulli number B1,χi .

Combining the previous calculations, we have now shown that in Q×N/Q
×p
N ,

ι(G−i) = S−1
i NB1,χiw

where w is a unit in ZN that, considered as an element of ZN [ζN ], is congruent to
1 modulo π. The isomorphism ZN [ζN ]/(π) = ZN/(N) tells us that w ≡ 1 mod N
and is thus a pth power in Q×N . Thus

ι(G−i) = NB1,χiS−1
i

in Q×N/Q
×p
N , as desired. �

We are now ready to prove Theorem 5.1.1. Up until this point, we have not made
any regularity assumptions. From now on, we assume that (p,−i) is a regular pair.

Proof of Theorem 5.1.1. We first check that ker j is 1-dimensional and spanned by
ι(G−i). As (p,−i) is a regular pair, we know that the generalized Bernoulli number

B1,χi is a p-adic unit by Remark 2.3.2. Therefore, in Q×N/Q
×p
N we have that

ι(G−i) = NB1,χiS−1
i

is a nonzero element of ker j.
(Equivalently, one could instead notice that h1

N (Fp(−i)) = 1 from part 2 of The-
orem 2.3.5. By Remark 5.1.4, this gives us that the codomain of j is 1-dimensional
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as well. The domain of j is Q×N/Q
×p
N which is 2-dimensional, which shows that j

has a nontrivial kernel.)
Now we need to check that j is nonzero, which by Remark 5.1.4 is equivalent to

showing that the dual map

resN : H1
N (Fp(−i))→ H1(GQN

,Fp)

is nonzero.
This must be the case, as the class in H1

N (Fp(−i)) is unramified away from N ,
and thus must be ramified at N as (p,−i) is a regular pair. In particular, it is not
split at N .

To finish, let c be a generator of H1
N (Fp(−i)). This gives a ψc : C−i → Fp

as in the discussion after the statement of Theorem 5.1.1. Recall also from that
discussion that c ∈ H1

Σ(Fp(−i)) if and only if the kernel of ψc,N = ψc ◦ j contains

the element N ∈ Q×N/Q
×p
N .

Because ψc is an isomorphism, we have kerψc,N = ker j and thus the local
behavior of c is completely determined by ker j. By the above, ker j is spanned by

ι(G−i) = NB1,χiS−1
i

and thus contains N if and only if Si is a pth power in F×N . �

5.2. Relationship between Si, Mi, and C. We begin by showing that our Si is
a pth power in F×N if and only if Lecouturier’s Mi is. Recall from Section 1.1 that
for odd 1 ≤ i ≤ p− 4, Mi is defined by

Mi =

N−1∏
k=1

k−1∏
a=1

ka
i

.

Lemma 5.2.1. As elements of F×N/F
×p
N , S−1

i = Mi.

Proof. All equalities in this proof take place in F×N/F
×p
N . In Lemma 4.3 of [6],

Lecouturier proves that

Mi =

p−1∏
k=1

ΓN (k/p)k
i

where ΓN denotes the N -adic Gamma function (see below for a summary of the
properties of this function, and Chapter IV.2 of [5] for the detailed construction).
Using that k

p ≡ M(p − k) + 1 mod N , the Gamma functions can be replaced by

factorials

Mi =

p−1∏
k=1

((M(p− k))!)k
i

=

p−1∏
k=1

((Mk)!)−k
i

= S−1
i

where the second step follows by changing variables from k to p− k and discarding
p-th powers. �
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Theorem 5.1.1 establishes that under a regularity assumption, H1
Σ(Fp(−i)) is

nonzero if and only if Si is a pth power for odd i 6≡ −1 mod p− 1. A similar
relationship was known to Wake–Wang-Erickson in the case i ≡ 1 mod p− 1; see
Theorem 12.5.1 of [12].

However, these results are not stated in terms of S1, but rather in terms of
Merel’s number

C =

(N−1)/2∏
k=1

kk.

Theorem 1.3, (ii) of [2] states that if rK = 1 then C is not a pth power mod N .
Similarly, Proposition 4.0.1 and Theorem 5.1.1 together imply that if rK = 1 then
S1 is not a pth power mod N . Thus one might expect that the quantities C and S1

can be related in F×N/F
×p
N . The goal of this section is to prove this statement; to

do so we will introduce another family of quantities related to both C and the Si.
Let

Am =

N−1∏
k=1

kk
m

.

In Proposition 1.2 of [6], Lecouturier proves that

C = A
−3/4
2 in F×N/F

×p
N .

To relate the Am to the Si we will use the N -adic Gamma function, the relevant
properties of which are:

• ΓN : ZN → Z×N is a continuous function, constructed by extending the
function

ΓN (x) = (−1)x
∏

0<j<x,N -j

j

defined for positive integers x by continuity to all of ZN .
• For an integer 0 < x < N , we have ΓN (x) = (−1)x(x− 1)!.
• If x ≡ y mod N , then ΓN (x) ≡ ΓN (y) mod N .
• If x+ r is not divisible by N for 0 ≤ r ≤M − 1 where M = N−1

p , then

M−1∏
r=0

(x+ r) = (−1)M
ΓN (M + x)

ΓN (x)
.

See Chapter IV.2 of [5] for the construction of ΓN .

Proposition 5.2.2. Suppose that 0 < m < p− 1. Then

Am =

m−1∏
j=1

S
(−1)j(mj )
j in F×N/F

×p
N .

Proof. All equalities in this proof are in F×N/F
×p
N . We start by reindexing the

product in the definition of Am

Am =

p−1∏
k=1

M−1∏
r=0

(k + pr)(k+pr)m .
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After removing pth powers from the exponent and factoring out a pth power of p
we have that

Am =

p−1∏
k=1

M−1∏
r=0

(
k

p
+ r

)km

=

p−1∏
k=1

(
(−1)M

ΓN (M + k/p)

ΓN (k/p)

)km
where the second step follows from the last listed property of the N -adic Gamma
function. Aligning terms using by a “telescoping series” argument gives that

Am =

p−1∏
k=1

ΓN (k/p)(k+1)m−km .

Using that k
p ≡ M(p − k) + 1 mod N , the Gamma functions can be replaced by

factorials

Am =

p−1∏
k=1

((M(p− k))!)(k+1)m−km

=

p−1∏
k=1

((Mk)!)(p−k+1)m−(p−k)m

where the second step follows by changing variables from k to p − k. Simplifying
the exponent and combining terms appropriately into the Si, this yields that

Am =

m−1∏
j=0

S
(−1)j(mj )
j . �

Note that this theorem implies that

A2 = S−2
1 in F×N/F

×p
N

so combining this with the relationship between C and A2, we see that one of C,
A2, S1, and M1 is a pth power mod N if and only if all of them are.

Proposition 5.2.2 also shows that the Si can be recovered from the Am, at least
as elements of F×N/F

×p
N , using inductively that S1 = A2

2 and that

Si =

Ai+1

i−1∏
j=1

S
(−1)j+1(i+1

j )
j

(−1)i(i+1)

for all i.

5.3. A Criterion for H1
Σ(Fp(−i)) 6= 0, i Even. So far, the focus of this section

has been on odd i. At this point, we turn to finding invariants that will let us
compute whether or not H1

Σ(Fp(−i)) is trivial for even i 6= 0 mod p− 1.

Proposition 5.3.1. Let p be an odd prime, and let 2 ≤ i ≤ p− 3 be even. Suppose
that (p, 1 + i) is a regular pair. Then H1

Σ(Fp(−i)) is non-trivial if and only if both
of the following are satisfied:

(1) H1
Σ(Fp(1 + i)) 6= 0

(2) H1
p (Fp(1 + i)) ⊆ H1

Σ∗(Fp(1 + i))
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Proof. We see by Theorems 2.3.5 and 2.3.6 that H1
Σ(Fp(−i)) is non-trivial if and

only if H1
Σ∗(Fp(1 + i)) is 2-dimensional and thus equal to H1

S(Fp(1 + i)). Since
H1
S(Fp(1 + i)) is spanned by the subspaces H1

N (Fp(i+ 1)) and H1
p (Fp(i+ 1)), this

second condition happens if and only if we have both H1
N (Fp(1+i)) = H1

Σ(Fp(1+i))
and H1

p (Fp(1 + i)) ⊆ H1
Σ∗(Fp(1 + i)). �

Since we know how to test for H1
Σ(Fp(1 + i)) being non-trivial, we simply need

to find a way of testing whether or not H1
p (Fp(1 + i)) ⊆ H1

Σ∗(Fp(1 + i)).

The class in H1
p (Fp(1+ i)) is unramified at N , so it will land in H1

Σ∗(Fp(1+ i)) if
and only if it is split at N . By using the inflation-restriction sequence and Kummer
theory, we get that

H1
p (Fp(1 + i)) ∼= H1

p (GQ(ζp),Fp(1 + i))Gal(Q(ζp)/Q)

∼= (H1
p (GQ(ζp),Fp(1))(i))Gal(Q(ζp)/Q)

∼=
((

Z[ζp, p
−1]×

Z[ζp, p−1]×p

)
(i)

)Gal(Q(ζp)/Q)

∼=
(

Z[ζp, p
−1]×

Z[ζp, p−1]×p

)χ−i
where we have used that the restriction map is an isomorphism as the order of
Gal(Q(ζp)/Q) is prime to p. In other words, the extension of Q defined by a class

in H1
p (Fp(1 + i)) is always of the form Q(ζp, a

1/p), where a ∈ Z[ζp, p
−1]× and

σ(a) = aχ
−i(σ) modulo pth powers

for all σ ∈ Gal(Q(ζp)/Q). Note that given such an element, all of its Galois
conjugates are also Kummer generators of the same extension. Thus it suffices to
find such a Kummer generator a (which is independent of N), and then use that the
cohomology class spanning H1

p (Fp(1 + i)) is trivial at N if and only if the Kummer

generator is a pth power in Q×N , which happens if and only if the Kummer generator
is a pth power mod N .

The minimal polynomials of such elements can be computed using a computer
algebra system. This was done using SageMath [11] for p = 5 and p = 7. The
SageMath code is available on the second author’s personal website.

Theorem 5.3.2. We have:

(1) Suppose p = 5. Then H1
Σ(Fp(−2)) is nonzero if and only both S1 and the

roots of x2 + x− 1 are 5th powers in F×N .
(2) Suppose p = 7. Then

(a) H1
Σ(Fp(−2)) is nonzero if and only both S3 and the roots of

x3 + 41x2 + 54x+ 1

are 7th powers in F×N .
(b) H1

Σ(Fp(−4)) is nonzero if and only if both S1 and the roots of

x3 − 25x2 + 31x+ 1

are 7th powers in F×N .
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Remark 5.3.3. The polynomials in the theorem above are not unique. One could
use any other polynomial whose roots generate the same 1-dimensional subspace of(

Z[ζp, p
−1]×

Z[ζp, p−1]×p

)χ−i
.

6. Specific Primes

We now apply the results of the previous sections to the specific cases p = 3, 5,
and 7. For p = 3 the situation is quite straightforward, as the results of Section
3 imply that rK = 1. For p = 5 we show that the inequality of Theorem 3.0.1
is always an equality, which then determines rK solely in terms of the dimensions
h1

Σ(Fp(−1)) and h1
Σ(Fp(−2)). A similar argument applied to the case p = 7 proves

the converse to Theorem 1.1.2.
Throughout this section we will often use without reference the results of Section

2.3 on the dimensions of various Selmer subgroups of H1
S(Fp(−i)).

6.1. p = 3. If p = 3, Theorem 4.5 of [3] implies that rK = 1. In other words, if
N ≡ 1 mod 3, the only degree 3 unramified extension of K = Q(N1/3) is the genus
field.

The results of Section 3.1 recover this result in the following way. Lemmas 3.1.10
and 3.1.11 imply that the type m of any unramified extension E/K must satisfy
m ≤ p− 2 = 1. Lemma 3.1.5 shows that the only extension of type 1 is the genus

field K(ζ
(p)
N ). This proves the following theorem.

Theorem 6.1.1. Let p = 3. Then rK = 1.

6.2. p = 5. In the case p = 5, we prove the following refined version of Theorem
3.0.1.

Theorem 6.2.1. Let p = 5. Then rK = 1 + h1
Σ(Fp(−1)) + h1

Σ(Fp(−2)).

Proof. We know from Theorem 3.0.1 that

rK = 1 + h1
Σ(Symp−4V ⊗ Fp(2)) = 1 + h1

Σ(V (−2)).

Thus to prove the theorem it suffices to show that

h1
Σ(V (−2)) = h1

Σ(Fp(−1)) + h1
Σ(Fp(−2)).

In light of the short exact sequence of GQ,S-modules

0→ Fp(−1)→ V (−2)→ Fp(−2)→ 0

and the fact that H1
Σ(Fp(−1)) ⊆ H1

Σ(V (−2)) by the associated long exact sequence
in GQ,S-cohomology, it will suffice to prove that any class in H1

Σ(Fp(−2)) lifts to
H1

Σ(V (−2)), as in the discussion at the beginning of Section 4.
Suppose h1

Σ(Fp(−2)) 6= 0, and hence also h1
Σ(Fp(−1)) 6= 0 by Corollary 2.3.7.

We satisfy the conditions of Theorem 4.2.1, as p−1
2 = 2 ≡ −2 mod 4, so we know

that the class spanning H1
Σ(Fp(−2)) lifts to a class in H1

Σ∗(V (−2)). Since we also
have

h1
Σ∗(Fp(−1)) = 2 > 1 = h1

Σ(Fp(−1))

in this situation by Theorem 2.3.6, we may apply Lemma 4.1.3 to choose a lift
which in fact is in H1

Σ(V (−2)). �

Combining this theorem with the results of Section 5 proves Theorem 1.1.3:
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Proof of Theorem 1.1.3. Since each h1
Σ(Fp(−i)) is at most 1, we obtain the bound

rK ≤ 3. We know that rK ≥ 2 if and only if S1 =
∏p−1
k=1((Mk)!)k is a 5th power

in F×N , as Theorem 5.1.1 proves that h1
Σ(Fp(−1)) = 1 if and only if S1 is a 5th

power, and further, rK = 3 if and only if h1
Σ(Fp(−1)) = h1

Σ(Fp(−2)) = 1, which by

Theorems 5.1.1 and 5.3.2 happens if and only if both S1 and
√

5−1
2 are 5th powers

in F×N . �

See Appendix A.1 for data on how often each of the three possible cases rK = 1,
2, or 3 occurs.

6.3. p = 7. When p = 7 it is not the case that rK can be determined completely by
the dimensions h1

Σ(Fp(−i)). Note that when p = 7 the possible groups H1
Σ(Fp(−i))

that may arise are those for i ∈ {1, 2, 3, 4}. When discussing the possible cases we
will indicate the dimensions of these H1

Σ(Fp(−i)) by a binary string of length 4;
so for example 1000 is used to indicate h1

Σ(Fp(−1)) = 1 and h1
Σ(Fp(−i)) = 0 for

i ∈ {2, 3, 4}. By Corollary 2.3.7, not all binary strings of length 4 may occur of as
the dimensions of the h1

Σ(Fp(−i)); if h1
Σ(Fp(−i)) = 1 for i = 2 or 4, we must have

that h1
Σ(Fp(−i)) = 1 for i = 3 or 1, respectively.

Theorem 6.3.1. Let p = 7. Then rK ≥ 2 if and only if at least one of H1
Σ(Fp(−1))

or H1
Σ(Fp(−3)) is nonzero.

Proof. By the upper bound given in Proposition 3.4.1, if rK ≥ 2 we must have at
least one of the h1

Σ(Fp(−i)) 6= 0. Corollary 2.3.7 shows that if any of the h1
Σ(Fp(−i))

is nonzero we must have that h1
Σ(Fp(−i)) = 1 for i = 1 or 3. This proves the “only

if” direction.
We have established in Proposition 4.0.1 that h1

Σ(Fp(−1)) = 1 =⇒ rK ≥ 2.
Thus it remains to show that when h1

Σ(Fp(−1)) = 0 and h1
Σ(Fp(−3)) = 1 we have

rK ≥ 2. There are two possible cases, based on whether or not h1
Σ(Fp(−2)) = 0.

Case 1: The dimensions of the H1
Σ(Fp(−i)) are 0110. In this situation, we have

by Theorems 2.3.5 and 2.3.6 that

2 = h1
S(Fp(−1)) > 1 = h1

Σ∗(Fp(−1)) > 0 = h1
Σ(Fp(−1)),

hence we may apply Lemma 4.1.4 to show that the class spanning H1
Σ(Fp(−2)) lifts

to H1
Σ(V (−2)). Since V (−2) is the 2-dimensional subrepresentation of

Symp−4V ⊗ Fp(2) = Sym3V ⊗ Fp(−4),

we have by Theorem 3.0.1 and the discussion at the start of Section 3.4 that

rK = 1 + h1
Σ(Sym3V ⊗ Fp(−4))

≥ 1 + h1
Σ(V (−2))

≥ 1 + 1 = 2.

Case 2: The dimensions of the H1
Σ(Fp(−i)) are 0010. The conditions of The-

orem 4.2.1 are satisfied here, so a class spanning H1
Σ(Fp(−3)) lifts to a class in

H1
Σ∗(V (−3)). Using that

1 = h1
Σ∗(Fp(−2)) > 0 = h1

Σ(Fp(−2))

by Theorem 2.3.6, we may apply Lemma 4.1.3 to show that there is in fact a lift to
H1

Σ(V (−3)). Now, using that again that

2 = h1
S(Fp(−1)) > 1 = h1

Σ∗(Fp(−1)) > 0 = h1
Σ(Fp(−1)),
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we apply Lemma 4.1.4 to show that the class in H1
Σ(V (−3)) lifts to a class in

H1
Σ(Sym2V ⊗ Fp(−3)). Since Sym2V ⊗ Fp(−3) is the 3-dimensional subrepresen-

tation of Sym3V ⊗ Fp(−4), we have again by Theorem 3.0.1 and the discussion in
Section 3.4 that

rK = 1 + h1
Σ(Sym3V ⊗ Fp(−4))

≥ 1 + h1
Σ(Sym2V ⊗ Fp(−3))

≥ 1 + 1 = 2. �

Theorem 1.1.4 follows by combining this result and Theorem 5.1.1: the dimen-
sions h1

Σ(Fp(−1)) and h1
Σ(Fp(−3)) are nonzero if and only if, respectively, S1 and

S3 are 7th powers in F×N .
We have upper and lower bounds on rK by Theorem 3.0.1, and we may interpret

Theorem 6.3.1 as improving the lower bound to

1 + max{h1
Σ(Fp(−1)), h1

Σ(Fp(−3))} ≤ rK ≤ 1 +

4∑
i=1

h1
Σ(Fp(−i)).

These bounds are optimal, in the sense that for a given binary string of dimensions
h1

Σ(Fp(−i)) there exist N ≡ 1 mod 7 for which the corresponding rK witness all
possible values between the upper and lower bounds. See Appendix A.2 for data
on the distribution of N among values for the h1

Σ(Fp(−i)) and rK .
We turn now to a study of the possibilities that may occur when rK does not

achieve the upper bound of Theorem 3.0.1. We say that a class ai ∈ H1
Σ(Fp(−i))

“contributes to rK” if ai lifts all the way to H1
Σ(Symi−1V ⊗ Fp(−i)), which is a

subset of H1
Σ(Sym3V ⊗ Fp(−4)).

Remark 6.3.2. If rK < 1 +
∑4
i=1 h

1
Σ(Fp(−i)), it is not always possible to deter-

mine using the dimensions h1
Σ(Fp(−i)) which class ai ∈ H1

Σ(Fp(−i)) is failing to
contribute to rK .

For example, suppose that rK = 3 and the dimensions h1
Σ(Fp(−i)) are 1011. It

must be the case that one of a3 ∈ H1
Σ(Fp(−3)) and a4 ∈ H1

Σ(Fp(−4)) is contributing
to rK and the other is failing to. However, the conditions of Lemma 4.1.4 are not
satisfied in this situation as H1

S(Fp(−1)) = H1
Σ∗(Fp(−1)), so the results of Section

4 are not strong enough to show that either class always contributes to rK .

When a failure to contribute to rK can be tracked down to a specific class
ai ∈ H1

Σ(Fp(−i)) there are two aspects of its failure to contribute which may be
considered. First, there is the stage of lifting at which the failure occurs: there is
a k ≥ 1 such that ai lifts to H1

Σ(Symk−1V ⊗ Fp(−i)) but not one step further to

H1
Σ(SymkV ⊗Fp(−i)). Second, there is the type of failure which occurs at this kth

stage. The class ai always lifts to H1
S(SymkV ⊗ Fp(−i)) but it could be the case

that:

(1) No lift to H1
S(SymkV ⊗ Fp(−i)) is split at p;

(2) No lift to H1
S(SymkV ⊗ Fp(−i)) vanishes when restricted to KN ;

(3) There are lifts that satisfy the local condition at p or at N , but no lift
satisfies both local conditions simultaneously.

In some cases it is possible to determine at which stage and which type of fail-
ure to lift is occurring, by an analysis of the dimensions of the subgroups of the
H1
S(Fp(−i)) using the results of Section 2.3. Examples of situations witnessing
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each of the above types of local failure are collected below. In each example, the
class a3 ∈ H1

Σ(Fp(−3)) fails to contribute to rK . Note that by Theorem 4.2.1
there is a lift of a3 to H1

Σ∗(V (−3)), and since the set of all lifts is a coset of
H1
S(Fp(−2)) = H1

Σ∗(Fp(−2)), we in fact have that every lift of a3 is in H1
Σ∗(V (−3)).

Example 6.3.3. Suppose that the dimensions h1
Σ(Fp(−i)) are 0110 and rK = 2. The

proof of Theorem 6.3.1 showed that the class in H1
Σ(Fp(−2)) contributes to rK , so

it must be the case that a3 ∈ H1
Σ(Fp(−3)) does not lift to H1

Σ(Sym2V ⊗ Fp(−3)).
Suppose that a3 lifts to H1

Σ(V (−3)). Then Lemma 4.1.4 would apply as

h1
S(Fp(−1)) = 2

h1
Σ∗(Fp(−1)) = 1 + h1

Σ(Fp(−4)) = 1

h1
Σ(Fp(−1)) = 0,

so there would exist a lift of a3 to H1
Σ(Sym2V ⊗ Fp(−3)). Since our assumption

that rK = 2 implies that a3 does not lift to H1
Σ(Sym2V ⊗ Fp(−3)), it must be the

case that a3 does not lift to H1
Σ(V (−3)).

We know that every lift of a3 to H1
S(V (−3)) is in H1

Σ∗(V (−3)), thus it must be
the case that no lift is split at p.

Example 6.3.4. Suppose that the dimensions h1
Σ(Fp(−i)) are 1011 and rK = 2. As

in the proof of Theorem 6.3.1, Theorem 4.2.1 shows that a3 lifts to H1
Σ∗(V (−3)),

and then Lemma 4.1.3 shows that there is a modification of this lift which is in
H1

Σ(V (−3)).

Suppose that there is a lift of this class to H1
Σ∗(Sym2V ⊗Fp(−3)). Then Lemma

4.1.3 would apply to show that there is a lift to H1
Σ(Sym2V ⊗ Fp(−3)), as

h1
Σ∗(Fp(−1)) = 1 + h1

Σ(Fp(−4)) = 2

h1
Σ(Fp(−1)) = 1.

Our assumption that rK = 2 means that a3 does not contribute to rK , hence there
cannot be a lift of a3 to H1

Σ∗(Sym2V ⊗ Fp(−3)).

Example 6.3.5. Suppose that the dimensions h1
Σ(Fp(−i)) are 1010 and rK = 2. As

in the previous example, a3 lifts to H1
Σ(V (−3)).

We have that

2 = h1
S(Fp(−1)) > 1 = h1

Σ∗(Fp(−1)) = h1
N (Fp(−1)) = h1

Σ(Fp(−1)),

hence we may apply Lemmas 4.1.1 and 4.1.2 to show that there are lifts of a3 to
both H1

Σ∗(Sym2V ⊗ Fp(−3)) and H1
N (Sym2V ⊗ Fp(−3)), respectively.

However, we know that a3 fails to contribute to rK , so it must be the case that
no lift of a3 is in

H1
Σ(Sym2V ⊗ Fp(−3)) = H1

Σ∗(Sym2V ⊗ Fp(−3)) ∩H1
N (Sym2V ⊗ Fp(−3)).

In other words there is no lift of a3 which satisfies the conditions at p and N
simultaneously, despite there being lifts which satisfy each condition individually.

Appendix A. Data for p = 5, 7

All computations in this section were performed using PARI/GP [10] and Sage-
Math [11]. The computation of ranks of class groups when p = 7 used PARI/GP’s
built-in algorithms for computing class groups of number fields, which assume GRH
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to optimize computation. Thus the ranks computed when p = 7 in all cases other
than those where the rank is determined by the numbers h1

Σ(Fp(−i)) as in Section
6.3 are conditional on GRH.

The SageMath code for computing the numbers h1
Σ(Fp(−i)) for p = 7 via the

methods in Section 5 is available on the second author’s website. The data in Table
2 took approximately 10 hours to gather using a low-range commercial processor.

A.1. p = 5. For primes N ≡ 1 mod 5, N ≤ 20,000,000 we computed the dimensions
h1

Σ(Fp(−1)) and h1
Σ(Fp(−2)) using the results of Section 5. For each N there are

three possible sets of dimensions: both are 0, h1
Σ(Fp(−1)) = 1 and h1

Σ(Fp(−2)) = 0,
and both are 1; as in Section 6.3 these are notated by a binary string of length 2 (00,
10, and 11). Note that by Theorem 6.2.1 the dimensions h1

Σ(Fp(−i)) completely
determine the rank rK . There are 317,587 such primes N , and their distribution
among the three possible cases is given in Table 1.

Dimensions rK Number of N
00 1 253, 234
10 2 51, 613
11 3 12, 740

Total 317, 587

Table 1. Data for p = 5.

From this we see that 20.26% of N in this range have rK ≥ 2, and of those N ,

19.80% of N have rK ≥ 3. We expect that the quantities M1 and
√

5−1
2 should be

“uniformly distributed” in Z/5Z ∼= F×N/F
×5
N , meaning that they are 5th powers for

a set of primes of density 1
5 in the primes N ≡ 1 mod 5. This would imply that

rK ≥ 2 for 1
5 of those primes and that rK = 3 for 1

25 of primes N ≡ 1 mod 5, which
is suggested by the data.

A.2. p = 7. For primes N ≡ 1 mod 7, N ≤ 100,000,000, we computed the dimen-
sions h1

Σ(Fp(−i)) for i = 1, 2, 3, 4 using the results of Section 5. There are 960,023
such primes N , and their distribution among the possible cases is given in Table 2.

Dimensions Number of N
0000 705, 575
1000 99, 649
0010 101, 126
1010 15, 057
1001 16, 610
0110 16, 580
1011 2, 249
1110 2, 546
1111 631
Total 960, 023

Table 2. Dimensions of the H1
Σ(Fp(−i)), p = 7 and N ≤ 100,000,000.
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For primes N ≡ 1 mod 7 and N ≤ 20,000,000, we computed the rank rK (which
is not determined completely by the h1

Σ(Fp(−i)) in this case). There are 211,766
such primes N , and their distribution between possible ranks 1 ≤ rK ≤ 5 and
dimensions h1

Σ(Fp(−i)) are given in Table 3. The empty cells in Table 3 are cases
that are shown to never occur in Section 6.3; in particular every case not ruled out
in Section 6.3 does occur.

Dimensions rK = 1 rK = 2 rK = 3 rK = 4 rK = 5 Total
0000 155, 691 155, 691
1000 21, 975 21, 975
0010 22, 201 22, 201
1010 2, 925 478 3, 403
1001 3, 110 487 3, 597
0110 3, 133 499 3, 632
1011 444 50 10 504
1110 407 170 2 579
1111 130 46 6 2 184
Total 155, 691 54, 325 1, 730 18 2 211, 766

Table 3. Ranks rK and dimensions of the H1
Σ(Fp(−i)), p = 7

and N ≤ 20,000,000.

As in the case p = 5, one might expect that H1
Σ(Fp(−1)) and H1

Σ(Fp(−3)) are
each nonzero for 1

7 of primes N ≡ 1 mod 7. Indeed, the data supports this guess,

with 14.24% of the N tested having H1
Σ(Fp(−1)) nonzero, and 14.39% of the N

tested having H1
Σ(Fp(−3)) nonzero.

One might also expect that 1
7 of primes with H1

Σ(Fp(−1)) nonzero also have

H1
Σ(Fp(−4)) nonzero, as this just rests on whether or not the roots of a fixed

polynomial are 7th powers mod N ; this holds for 14.25% of the N tested. Similarly,
H1

Σ(Fp(−2)) is nonzero for 14.30% of the primes tested for which H1
Σ(Fp(−3)) is

nonzero.
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